Header logo is


2015


no image
Human Machine Interface for Dexto Eka: - The humanoid robot

Kumra, S., Mohan, M., Gupta, S., Vaswani, H.

In Proceedings of the IEEE International Conference on Robotics, Automation, Control and Embedded Systems (RACE), Chennai, India, Febuary 2015 (inproceedings)

Abstract
This paper illustrates hybrid control system of the humanoid robot, Dexto:Eka: focusing on the dependent or slave mode. Efficiency of any system depends on the fluid operation of its control system. Here, we elucidate the control of 12 DoF robotic arms and an omnidirectional mecanum wheel drive using an exo-frame, and a Graphical User Interface (GUI) and a control column. This paper comprises of algorithms, control mechanisms and overall flow of execution for the regulation of robotic arms, graphical user interface and locomotion.

hi

DOI [BibTex]

2015


DOI [BibTex]


no image
Conception and development of Dexto:Eka: The Humanoid Robot - Part IV

Kumra, S., Mohan, M., Vaswani, H., Gupta, S.

In Proceedings of the IEEE International Conference on Robotics, Automation, Control and Embedded Systems (RACE), Febuary 2015 (inproceedings)

Abstract
This paper elucidates the fourth phase of the development of `Dexto:Eka: - The Humanoid Robot'. It lays special emphasis on the conception of the locomotion drive and the development of vision based system that aids navigation and tele-operation. The first three phases terminated with the completion of two robotic arms with six degrees of freedom each, structural development and the creation of a human machine interface that included an exo-frame, a control column and a graphical user interface. This phase also involved the enhancement of the exo-frame to a vision based system using a Kinect camera. The paper also focuses on the reasons behind choosing the locomotion drive and the benefits it has.

hi

DOI [BibTex]

DOI [BibTex]


no image
Trajectory generation for multi-contact momentum control

Herzog, A., Rotella, N., Schaal, S., Righetti, L.

In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages: 874-880, IEEE, Seoul, South Korea, 2015 (inproceedings)

Abstract
Simplified models of the dynamics such as the linear inverted pendulum model (LIPM) have proven to perform well for biped walking on flat ground. However, for more complex tasks the assumptions of these models can become limiting. For example, the LIPM does not allow for the control of contact forces independently, is limited to co-planar contacts and assumes that the angular momentum is zero. In this paper, we propose to use the full momentum equations of a humanoid robot in a trajectory optimization framework to plan its center of mass, linear and angular momentum trajectories. The model also allows for planning desired contact forces for each end-effector in arbitrary contact locations. We extend our previous results on linear quadratic regulator (LQR) design for momentum control by computing the (linearized) optimal momentum feedback law in a receding horizon fashion. The resulting desired momentum and the associated feedback law are then used in a hierarchical whole body control approach. Simulation experiments show that the approach is computationally fast and is able to generate plans for locomotion on complex terrains while demonstrating good tracking performance for the full humanoid control.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Humanoid Momentum Estimation Using Sensed Contact Wrenches

Rotella, N., Herzog, A., Schaal, S., Righetti, L.

In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages: 556-563, IEEE, Seoul, South Korea, 2015 (inproceedings)

Abstract
This work presents approaches for the estimation of quantities important for the control of the momentum of a humanoid robot. In contrast to previous approaches which use simplified models such as the Linear Inverted Pendulum Model, we present estimators based on the momentum dynamics of the robot. By using this simple yet dynamically-consistent model, we avoid the issues of using simplified models for estimation. We develop an estimator for the center of mass and full momentum which can be reformulated to estimate center of mass offsets as well as external wrenches applied to the robot. The observability of these estimators is investigated and their performance is evaluated in comparison to previous approaches.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2013


no image
Governance of Humanoid Robot Using Master Exoskeleton

Kumra, S., Mohan, M., Gupta, S., Vaswani, H.

In Proceedings of the IEEE International Symposium on Robotics (ISR), Seoul, South Korea, October 2013 (inproceedings)

Abstract
Dexto:Eka: is an adult-size humanoid robot being developed with the aim of achieving tele-presence. The paper sheds light on the control of this robot using a Master Exoskeleton which comprises of an Exo-Frame, a Control Column and a Graphical User Interface. It further illuminates the processes and algorithms that have been utilized to make an efficient system that would effectively emulate a tele-operator.

hi

DOI [BibTex]

2013


DOI [BibTex]


no image
Design and development part 2 of Dexto:Eka: - The humanoid robot

Kumra, S., Mohan, M., Gupta, S., Vaswani, H.

In Proceedings of the International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, August 2013 (inproceedings)

Abstract
Through this paper, we elucidate the second phase of the design and development of the tele-operated humanoid robot Dexto:Eka:. Phase one comprised of the development of a 6 DoF left anthropomorphic arm and left exo-frame. Here, we illustrate the development of the right arm, right exo-frame, torso, backbone, human machine interface and omni-directional locomotion system. Dexto:Eka: will be able to communicate with a remote user through Wi-Fi. An exo-frame capacitates it to emulate human arms and its locomotion is controlled by joystick. A Graphical User Interface monitors and helps in controlling the system.

hi

DOI [BibTex]

DOI [BibTex]


no image
AGILITY – Dynamic Full Body Locomotion and Manipulation with Autonomous Legged Robots

Hutter, M., Bloesch, M., Buchli, J., Semini, C., Bazeille, S., Righetti, L., Bohg, J.

In 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages: 1-4, IEEE, Linköping, Sweden, 2013 (inproceedings)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Objective Functions for Manipulation

Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In 2013 IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
We present an approach to learning objective functions for robotic manipulation based on inverse reinforcement learning. Our path integral inverse reinforcement learning algorithm can deal with high-dimensional continuous state-action spaces, and only requires local optimality of demonstrated trajectories. We use L 1 regularization in order to achieve feature selection, and propose an efficient algorithm to minimize the resulting convex objective function. We demonstrate our approach by applying it to two core problems in robotic manipulation. First, we learn a cost function for redundancy resolution in inverse kinematics. Second, we use our method to learn a cost function over trajectories, which is then used in optimization-based motion planning for grasping and manipulation tasks. Experimental results show that our method outperforms previous algorithms in high-dimensional settings.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Using Torque Redundancy to Optimize Contact Forces in Legged Robots

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

In Redundancy in Robot Manipulators and Multi-Robot Systems, 57, pages: 35-51, Lecture Notes in Electrical Engineering, Springer Berlin Heidelberg, 2013 (incollection)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In the following, we present an inverse dynamics controller that exploits torque redundancy to directly and explicitly minimize any combination of linear and quadratic costs in the contact constraints and in the commands. Such a result is particularly relevant for legged robots as it allows to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, it can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The proposed controller is very simple and computationally efficient, and most importantly it can greatly improve the performance of legged locomotion on difficult terrains as can be seen in the experimental results.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Task Error Models for Manipulation

Pastor, P., Kalakrishnan, M., Binney, J., Kelly, J., Righetti, L., Sukhatme, G. S., Schaal, S.

In 2013 IEEE Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
Precise kinematic forward models are important for robots to successfully perform dexterous grasping and manipulation tasks, especially when visual servoing is rendered infeasible due to occlusions. A lot of research has been conducted to estimate geometric and non-geometric parameters of kinematic chains to minimize reconstruction errors. However, kinematic chains can include non-linearities, e.g. due to cable stretch and motor-side encoders, that result in significantly different errors for different parts of the state space. Previous work either does not consider such non-linearities or proposes to estimate non-geometric parameters of carefully engineered models that are robot specific. We propose a data-driven approach that learns task error models that account for such unmodeled non-linearities. We argue that in the context of grasping and manipulation, it is sufficient to achieve high accuracy in the task relevant state space. We identify this relevant state space using previously executed joint configurations and learn error corrections for those. Therefore, our system is developed to generate subsequent executions that are similar to previous ones. The experiments show that our method successfully captures the non-linearities in the head kinematic chain (due to a counterbalancing spring) and the arm kinematic chains (due to cable stretch) of the considered experimental platform, see Fig. 1. The feasibility of the presented error learning approach has also been evaluated in independent DARPA ARM-S testing contributing to successfully complete 67 out of 72 grasping and manipulation tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2007


no image
Hand placement during quadruped locomotion in a humanoid robot: A dynamical system approach

Degallier, S., Righetti, L., Ijspeert, A.

In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 2047-2052, IEEE, San Diego, USA, 2007 (inproceedings)

Abstract
Locomotion on an irregular surface is a challenging task in robotics. Among different problems to solve to obtain robust locomotion, visually guided locomotion and accurate foot placement are of crucial importance. Robust controllers able to adapt to sensory-motor feedbacks, in particular to properly place feet on specific locations, are thus needed. Dynamical systems are well suited for this task as any online modification of the parameters leads to a smooth adaptation of the trajectories, allowing a safe integration of sensory-motor feedback. In this contribution, as a first step in the direction of locomotion on irregular surfaces, we present a controller that allows hand placement during crawling in a simulated humanoid robot. The goal of the controller is to superimpose rhythmic movements for crawling with discrete (i.e. short-term) modulations of the hand placements to reach specific marks on the ground.

mg

link (url) DOI [BibTex]

2007


link (url) DOI [BibTex]


no image
Lower body realization of the baby humanoid - ‘iCub’

Tsagarakis, N., Becchi, F., Righetti, L., Ijspeert, A., Caldwell, D.

In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3616-3622, IEEE, San Diego, USA, 2007 (inproceedings)

Abstract
Nowadays, the understanding of the human cognition and it application to robotic systems forms a great challenge of research. The iCub is a robotic platform that was developed within the RobotCub European project to provide the cognition research community with an open baby- humanoid platform for understanding and development of cognitive systems. In this paper we present the design requirements and mechanical realization of the lower body developed for the "iCub". In particular the leg and the waist mechanisms adopted for lower body to match the size and physical abilities of a 2 frac12 year old human baby are introduced.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2005


no image
A dynamical systems approach to learning: a frequency-adaptive hopper robot

Buchli, J., Righetti, L., Ijspeert, A.

In Proceedings of the VIIIth European Conference on Artificial Life ECAL 2005, pages: 210-220, Springer Verlag, 2005 (inproceedings)

mg

[BibTex]

2005


[BibTex]


no image
From Dynamic Hebbian Learning for Oscillators to Adaptive Central Pattern Generators

Righetti, L., Buchli, J., Ijspeert, A.

In Proceedings of 3rd International Symposium on Adaptive Motion in Animals and Machines – AMAM 2005, Verlag ISLE, Ilmenau, 2005 (inproceedings)

mg

[BibTex]

[BibTex]