Header logo is


2013


no image
Determination of an Analysis Procedure for FEM-Based Fatigue Calculations

Serhat, G.

Technical University of Munich, December 2013 (mastersthesis)

hi

[BibTex]

2013


[BibTex]


no image
A Practical System For Recording Instrument Interactions During Live Robotic Surgery

McMahan, W., Gomez, E. D., Chen, L., Bark, K., Nappo, J. C., Koch, E. I., Lee, D. I., Dumon, K., Williams, N., Kuchenbecker, K. J.

Journal of Robotic Surgery, 7(4):351-358, 2013 (article)

hi

[BibTex]

[BibTex]


Vision meets Robotics: The {KITTI} Dataset
Vision meets Robotics: The KITTI Dataset

Geiger, A., Lenz, P., Stiller, C., Urtasun, R.

International Journal of Robotics Research, 32(11):1231 - 1237 , Sage Publishing, September 2013 (article)

Abstract
We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation system. The scenarios are diverse, capturing real-world traffic situations and range from freeways over rural areas to inner-city scenes with many static and dynamic objects. Our data is calibrated, synchronized and timestamped, and we provide the rectified and raw image sequences. Our dataset also contains object labels in the form of 3D tracklets and we provide online benchmarks for stereo, optical flow, object detection and other tasks. This paper describes our recording platform, the data format and the utilities that we provide.

avg ps

pdf DOI [BibTex]

pdf DOI [BibTex]


no image
Vibrotactile Display: Perception, Technology, and Applications

Choi, S., Kuchenbecker, K. J.

Proceedings of the IEEE, 101(9):2093-2104, sep 2013 (article)

hi

[BibTex]

[BibTex]


no image
ROS Open-source Audio Recognizer: ROAR Environmental Sound Detection Tools for Robot Programming

Romano, J. M., Brindza, J. P., Kuchenbecker, K. J.

Autonomous Robots, 34(3):207-215, April 2013 (article)

hi

[BibTex]

[BibTex]


Probabilistic Models for 3D Urban Scene Understanding from Movable Platforms
Probabilistic Models for 3D Urban Scene Understanding from Movable Platforms

Geiger, A.

Karlsruhe Institute of Technology, Karlsruhe Institute of Technology, April 2013 (phdthesis)

Abstract
Visual 3D scene understanding is an important component in autonomous driving and robot navigation. Intelligent vehicles for example often base their decisions on observations obtained from video cameras as they are cheap and easy to employ. Inner-city intersections represent an interesting but also very challenging scenario in this context: The road layout may be very complex and observations are often noisy or even missing due to heavy occlusions. While Highway navigation and autonomous driving on simple and annotated intersections have already been demonstrated successfully, understanding and navigating general inner-city crossings with little prior knowledge remains an unsolved problem. This thesis is a contribution to understanding multi-object traffic scenes from video sequences. All data is provided by a camera system which is mounted on top of the autonomous driving platform AnnieWAY. The proposed probabilistic generative model reasons jointly about the 3D scene layout as well as the 3D location and orientation of objects in the scene. In particular, the scene topology, geometry as well as traffic activities are inferred from short video sequences. The model takes advantage of monocular information in the form of vehicle tracklets, vanishing lines and semantic labels. Additionally, the benefit of stereo features such as 3D scene flow and occupancy grids is investigated. Motivated by the impressive driving capabilities of humans, no further information such as GPS, lidar, radar or map knowledge is required. Experiments conducted on 113 representative intersection sequences show that the developed approach successfully infers the correct layout in a variety of difficult scenarios. To evaluate the importance of each feature cue, experiments with different feature combinations are conducted. Additionally, the proposed method is shown to improve object detection and object orientation estimation performance.

avg ps

pdf [BibTex]

pdf [BibTex]


no image
In Vivo Validation of a System for Haptic Feedback of Tool Vibrations in Robotic Surgery

Bark, K., McMahan, W., Remington, A., Gewirtz, J., Wedmid, A., Lee, D. I., Kuchenbecker, K. J.

Surgical Endoscopy, 27(2):656-664, February 2013, dynamic article (paper plus video), available at \href{http://www.springerlink.com/content/417j532708417342/}{http://www.springerlink.com/content/417j532708417342/} (article)

hi

[BibTex]

[BibTex]


no image
Perception of Springs with Visual and Proprioceptive Motion Cues: Implications for Prosthetics

Gurari, N., Kuchenbecker, K. J., Okamura, A. M.

IEEE Transactions on Human-Machine Systems, 43, pages: 102-114, January 2013, \href{http://www.youtube.com/watch?v=DBRw87Wk29E\&feature=youtu.be}{Video} (article)

hi

[BibTex]

[BibTex]


no image
Expectation and Attention in Hierarchical Auditory Prediction

Chennu, S., Noreika, V., Gueorguiev, D., Blenkmann, A., Kochen, S., Ibáñez, A., Owen, A. M., Bekinschtein, T. A.

Journal of Neuroscience, 33(27):11194-11205, Society for Neuroscience, 2013 (article)

Abstract
Hierarchical predictive coding suggests that attention in humans emerges from increased precision in probabilistic inference, whereas expectation biases attention in favor of contextually anticipated stimuli. We test these notions within auditory perception by independently manipulating top-down expectation and attentional precision alongside bottom-up stimulus predictability. Our findings support an integrative interpretation of commonly observed electrophysiological signatures of neurodynamics, namely mismatch negativity (MMN), P300, and contingent negative variation (CNV), as manifestations along successive levels of predictive complexity. Early first-level processing indexed by the MMN was sensitive to stimulus predictability: here, attentional precision enhanced early responses, but explicit top-down expectation diminished it. This pattern was in contrast to later, second-level processing indexed by the P300: although sensitive to the degree of predictability, responses at this level were contingent on attentional engagement and in fact sharpened by top-down expectation. At the highest level, the drift of the CNV was a fine-grained marker of top-down expectation itself. Source reconstruction of high-density EEG, supported by intracranial recordings, implicated temporal and frontal regions differentially active at early and late levels. The cortical generators of the CNV suggested that it might be involved in facilitating the consolidation of context-salient stimuli into conscious perception. These results provide convergent empirical support to promising recent accounts of attention and expectation in predictive coding.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Behavior as broken symmetry in embodied self-organizing robots

Der, R., Martius, G.

In Advances in Artificial Life, ECAL 2013, pages: 601-608, MIT Press, 2013 (incollection)

al

[BibTex]

[BibTex]


no image
Information Driven Self-Organization of Complex Robotic Behaviors

Martius, G., Der, R., Ay, N.

PLoS ONE, 8(5):e63400, Public Library of Science, 2013 (article)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Linear combination of one-step predictive information with an external reward in an episodic policy gradient setting: a critical analysis

Zahedi, K., Martius, G., Ay, N.

Frontiers in Psychology, 4(801), 2013 (article)

Abstract
One of the main challenges in the field of embodied artificial intelligence is the open-ended autonomous learning of complex behaviours. Our approach is to use task-independent, information-driven intrinsic motivation(s) to support task-dependent learning. The work presented here is a preliminary step in which we investigate the predictive information (the mutual information of the past and future of the sensor stream) as an intrinsic drive, ideally supporting any kind of task acquisition. Previous experiments have shown that the predictive information (PI) is a good candidate to support autonomous, open-ended learning of complex behaviours, because a maximisation of the PI corresponds to an exploration of morphology- and environment-dependent behavioural regularities. The idea is that these regularities can then be exploited in order to solve any given task. Three different experiments are presented and their results lead to the conclusion that the linear combination of the one-step PI with an external reward function is not generally recommended in an episodic policy gradient setting. Only for hard tasks a great speed-up can be achieved at the cost of an asymptotic performance lost.

al

link (url) DOI [BibTex]


no image
Robustness of guided self-organization against sensorimotor disruptions

Martius, G.

Advances in Complex Systems, 16(02n03):1350001, 2013 (article)

Abstract
Self-organizing processes are crucial for the development of living beings. Practical applications in robots may benefit from the self-organization of behavior, e.g.~to increase fault tolerance and enhance flexibility, provided that external goals can also be achieved. We present results on the guidance of self-organizing control by visual target stimuli and show a remarkable robustness to sensorimotor disruptions. In a proof of concept study an autonomous wheeled robot is learning an object finding and ball-pushing task from scratch within a few minutes in continuous domains. The robustness is demonstrated by the rapid recovery of the performance after severe changes of the sensor configuration.

al

DOI [BibTex]

DOI [BibTex]

2009


no image
A Sensor-Based Learning Algorithm for the Self-Organization of Robot Behavior

Hesse, F., Martius, G., Der, R., Herrmann, J. M.

Algorithms, 2(1):398-409, 2009 (article)

Abstract
Ideally, sensory information forms the only source of information to a robot. We consider an algorithm for the self-organization of a controller. At short timescales the controller is merely reactive but the parameter dynamics and the acquisition of knowledge by an internal model lead to seemingly purposeful behavior on longer timescales. As a paradigmatic example, we study the simulation of an underactuated snake-like robot. By interacting with the real physical system formed by the robotic hardware and the environment, the controller achieves a sensitive and body-specific actuation of the robot.

al

link (url) [BibTex]

2009


link (url) [BibTex]

2005


no image
Contact Location Display for Haptic Perception of Curvature and Object Motion

Provancher, W. R., Cutkosky, M. R., Kuchenbecker, K. J., Niemeyer, G.

International Journal of Robotics Research, 24(9):691-702, sep 2005 (article)

hi

[BibTex]

2005


[BibTex]