Header logo is


2019


no image
Hierarchical Task-Parameterized Learning from Demonstration for Collaborative Object Movement

Hu, S., Kuchenbecker, K. J.

Applied Bionics and Biomechanics, (9765383), December 2019 (article)

Abstract
Learning from demonstration (LfD) enables a robot to emulate natural human movement instead of merely executing preprogrammed behaviors. This article presents a hierarchical LfD structure of task-parameterized models for object movement tasks, which are ubiquitous in everyday life and could benefit from robotic support. Our approach uses the task-parameterized Gaussian mixture model (TP-GMM) algorithm to encode sets of demonstrations in separate models that each correspond to a different task situation. The robot then maximizes its expected performance in a new situation by either selecting a good existing model or requesting new demonstrations. Compared to a standard implementation that encodes all demonstrations together for all test situations, the proposed approach offers four advantages. First, a simply defined distance function can be used to estimate test performance by calculating the similarity between a test situation and the existing models. Second, the proposed approach can improve generalization, e.g., better satisfying the demonstrated task constraints and speeding up task execution. Third, because the hierarchical structure encodes each demonstrated situation individually, a wider range of task situations can be modeled in the same framework without deteriorating performance. Last, adding or removing demonstrations incurs low computational load, and thus, the robot’s skill library can be built incrementally. We first instantiate the proposed approach in a simulated task to validate these advantages. We then show that the advantages transfer to real hardware for a task where naive participants collaborated with a Willow Garage PR2 robot to move a handheld object. For most tested scenarios, our hierarchical method achieved significantly better task performance and subjective ratings than both a passive model with only gravity compensation and a single TP-GMM encoding all demonstrations.

hi

DOI [BibTex]


Life Improvement Science: A Manifesto
Life Improvement Science: A Manifesto

Lieder, F.

December 2019 (article) In revision

Abstract
Rapid technological advances present unprecedented opportunities for helping people thrive. This manifesto presents a road map for establishing a solid scientific foundation upon which those opportunities can be realized. It highlights fundamental open questions about the cognitive underpinnings of effective living and how they can be improved, supported, and augmented. These questions are at the core of my proposal for a new transdisciplinary research area called life improvement science. Recent advances have made these questions amenable to scientific rigor, and emerging approaches are paving the way towards practical strategies, clever interventions, and (intelligent) apps for empowering people to reach unprecedented levels of personal effectiveness and wellbeing.

re

Life improvement science: a manifesto DOI [BibTex]


no image
Doing More with Less: Meta-Reasoning and Meta-Learning in Humans and Machines

Griffiths, T. L., Callaway, F., Chang, M. B., Grant, E., Krueger, P. M., Lieder, F.

Current Opinion in Behavioral Sciences, 29, pages: 24-30, October 2019 (article)

Abstract
Artificial intelligence systems use an increasing amount of computation and data to solve very specific problems. By contrast, human minds solve a wide range of problems using a fixed amount of computation and limited experience. We identify two abilities that we see as crucial to this kind of general intelligence: meta-reasoning (deciding how to allocate computational resources) and meta-learning (modeling the learning environment to make better use of limited data). We summarize the relevant AI literature and relate the resulting ideas to recent work in psychology.

re

DOI [BibTex]

DOI [BibTex]


no image
Low-Hysteresis and Low-Interference Soft Tactile Sensor Using a Conductive Coated Porous Elastomer and a Structure for Interference Reduction

Park, K., Kim, S., Lee, H., Park, I., Kim, J.

Sensors and Actuators A: Physical, 295, pages: 541-550, August 2019 (article)

Abstract
The need for soft whole-body tactile sensors is emerging. Piezoresistive materials are advantageous in terms of making large tactile sensors, but the hysteresis of piezoresistive materials is a major drawback. The hysteresis of a piezoresistive material should be attenuated to make a practical piezoresistive soft tactile sensor. In this paper, we introduce a low-hysteresis and low-interference soft tactile sensor using a conductive coated porous elastomer and a structure to reduce interference (grooves). The developed sensor exhibits low hysteresis because the transduction mechanism of the sensor is dominated by the contact between the conductive coated surface. In a cyclic loading experiment with different loading frequencies, the mechanical and piezoresistive hysteresis values of the sensor are less than 21.7% and 6.8%, respectively. The initial resistance change is found to be within 4% after the first loading cycle. To reduce the interference among the sensing points, we also propose a structure where the grooves are inserted between the adjacent electrodes. This structure is implemented during the molding process, which is adopted to extend the porous tactile sensor to large-scale and facile fabrication. The effects of the structure are investigated with respect to the normalized design parameters ΘD, ΘW, and ΘT in a simulation, and the result is validated for samples with the same design parameters. An indentation experiment also shows that the structure designed for interference reduction effectively attenuates the interference of the sensor array, indicating that the spatial resolution of the sensor array is improved. As a result, the sensor can exhibit low hysteresis and low interference simultaneously. This research can be used for many applications, such as robotic skin, grippers, and wearable devices.

hi

DOI [BibTex]

DOI [BibTex]


Cognitive Prostheses for Goal Achievement
Cognitive Prostheses for Goal Achievement

Lieder, F., Chen, O. X., Krueger, P. M., Griffiths, T. L.

Nature Human Behavior, 3, August 2019 (article)

Abstract
Procrastination and impulsivity take a significant toll on people’s lives and the economy at large. Both can result from the misalignment of an action's proximal rewards with its long-term value. Therefore, aligning immediate reward with long-term value could be a way to help people overcome motivational barriers and make better decisions. Previous research has shown that game elements, such as points, levels, and badges, can be used to motivate people and nudge their decisions on serious matters. Here, we develop a new approach to decision support that leveragesartificial intelligence and game elements to restructure challenging sequential decision problems in such a way that it becomes easier for people to take the right course of action. A series of four increasingly more realistic experiments suggests that this approach can enable people to make better decisions faster, procrastinate less, complete their work on time, and waste less time on unimportant tasks. These findings suggest that our method is a promising step towards developing cognitive prostheses that help people achieve their goals by enhancing their motivation and decision-making in everyday life.

re

DOI [BibTex]

DOI [BibTex]


Implementation of a 6-{DOF} Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues
Implementation of a 6-DOF Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues

Young, E. M., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 12(3):295-306, June 2019 (article)

Abstract
Existing fingertip haptic devices can deliver different subsets of tactile cues in a compact package, but we have not yet seen a wearable six-degree-of-freedom (6-DOF) display. This paper presents the Fuppeteer (short for Fingertip Puppeteer), a device that is capable of controlling the position and orientation of a flat platform, such that any combination of normal and shear force can be delivered at any location on any human fingertip. We build on our previous work of designing a parallel continuum manipulator for fingertip haptics by presenting a motorized version in which six flexible Nitinol wires are actuated via independent roller mechanisms and proportional-derivative controllers. We evaluate the settling time and end-effector vibrations observed during system responses to step inputs. After creating a six-dimensional lookup table and adjusting simulated inputs using measured Jacobians, we show that the device can make contact with all parts of the fingertip with a mean error of 1.42 mm. Finally, we present results from a human-subject study. A total of 24 users discerned 9 evenly distributed contact locations with an average accuracy of 80.5%. Translational and rotational shear cues were identified reasonably well near the center of the fingertip and more poorly around the edges.

hi

DOI Project Page [BibTex]


no image
How Does It Feel to Clap Hands with a Robot?

Fitter, N. T., Kuchenbecker, K. J.

International Journal of Social Robotics, 12(1):113-127, April 2019 (article)

Abstract
Future robots may need lighthearted physical interaction capabilities to connect with people in meaningful ways. To begin exploring how users perceive playful human–robot hand-to-hand interaction, we conducted a study with 20 participants. Each user played simple hand-clapping games with the Rethink Robotics Baxter Research Robot during a 1-h-long session involving 24 randomly ordered conditions that varied in facial reactivity, physical reactivity, arm stiffness, and clapping tempo. Survey data and experiment recordings demonstrate that this interaction is viable: all users successfully completed the experiment and mentioned enjoying at least one game without prompting. Hand-clapping tempo was highly salient to users, and human-like robot errors were more widely accepted than mechanical errors. Furthermore, perceptions of Baxter varied in the following statistically significant ways: facial reactivity increased the robot’s perceived pleasantness and energeticness; physical reactivity decreased pleasantness, energeticness, and dominance; higher arm stiffness increased safety and decreased dominance; and faster tempo increased energeticness and increased dominance. These findings can motivate and guide roboticists who want to design social–physical human–robot interactions.

hi

DOI [BibTex]

DOI [BibTex]


no image
Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources

Lieder, F., Griffiths, T. L.

Behavioral and Brain Sciences, 43, E1, Febuary 2019 (article)

Abstract
Modeling human cognition is challenging because there are infinitely many mechanisms that can generate any given observation. Some researchers address this by constraining the hypothesis space through assumptions about what the human mind can and cannot do, while others constrain it through principles of rationality and adaptation. Recent work in economics, psychology, neuroscience, and linguistics has begun to integrate both approaches by augmenting rational models with cognitive constraints, incorporating rational principles into cognitive architectures, and applying optimality principles to understanding neural representations. We identify the rational use of limited resources as a unifying principle underlying these diverse approaches, expressing it in a new cognitive modeling paradigm called resource-rational analysis. The integration of rational principles with realistic cognitive constraints makes resource-rational analysis a promising framework for reverse-engineering cognitive mechanisms and representations. It has already shed new light on the debate about human rationality and can be leveraged to revisit classic questions of cognitive psychology within a principled computational framework. We demonstrate that resource-rational models can reconcile the mind's most impressive cognitive skills with people's ostensive irrationality. Resource-rational analysis also provides a new way to connect psychological theory more deeply with artificial intelligence, economics, neuroscience, and linguistics.

re

DOI [BibTex]

DOI [BibTex]


no image
Statistical Coverage Control of Mobile Sensor Networks

Arslan, Ö.

IEEE Transactions on Robotics, 35(4):889-908, 2019 (article)

am

DOI [BibTex]

DOI [BibTex]


A Rational Reinterpretation of Dual Process Theories
A Rational Reinterpretation of Dual Process Theories

Milli, S., Lieder, F., Griffiths, T. L.

2019 (article)

Abstract
Highly influential "dual-process" accounts of human cognition postulate the coexistence of a slow accurate system with a fast error-prone system. But why would there be just two systems rather than, say, one or 93? Here, we argue that a dual-process architecture might be neither arbitrary nor irrational, but might instead reflect a rational tradeoff between the cognitive flexibility afforded by multiple systems and the time and effort required to choose between them. We investigate what the optimal set and number of cognitive systems would be depending on the structure of the environment. We find that the optimal number of systems depends on the variability of the environment and the difficulty of deciding when which system should be used. Furthermore, when having two systems is optimal, then the first system is fast but error-prone and the second system is slow but accurate. Our findings thereby provide a rational reinterpretation of dual-process theories.

re

DOI [BibTex]

DOI [BibTex]

2016


A New Perspective and Extension of the Gaussian Filter
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Garcia Cifuentes, C., Kappler, D., Schaal, S.

The International Journal of Robotics Research, 35(14):1731-1749, December 2016 (article)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. The GF represents the belief of the current state by a Gaussian distribution, whose mean is an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependences in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end, we view the GF as the solution to a constrained optimization problem. From this new perspective, the GF is seen as a special case of a much broader class of filters, obtained by relaxing the constraint on the form of the approximate posterior. On this basis, we outline some conditions which potential generalizations have to satisfy in order to maintain the computational efficiency of the GF. We propose one concrete generalization which corresponds to the standard GF using a pseudo measurement instead of the actual measurement. Extending an existing GF implementation in this manner is trivial. Nevertheless, we show that this small change can have a major impact on the estimation accuracy.

am ics

PDF DOI Project Page [BibTex]

2016


PDF DOI Project Page [BibTex]


no image
Probabilistic Inference for Determining Options in Reinforcement Learning

Daniel, C., van Hoof, H., Peters, J., Neumann, G.

Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECML-PKDD 2016 (article)

am ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Event-based Sampling for Reducing Communication Load in Realtime Human Motion Analysis by Wireless Inertial Sensor Networks

Laidig, D., Trimpe, S., Seel, T.

Current Directions in Biomedical Engineering, 2(1):711-714, De Gruyter, 2016 (article)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid

Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., Righetti, L.

Autonomous Robots, 40(3):473-491, 2016 (article)

Abstract
Hierarchical inverse dynamics based on cascades of quadratic programs have been proposed for the control of legged robots. They have important benefits but to the best of our knowledge have never been implemented on a torque controlled humanoid where model inaccuracies, sensor noise and real-time computation requirements can be problematic. Using a reformulation of existing algorithms, we propose a simplification of the problem that allows to achieve real-time control. Momentum-based control is integrated in the task hierarchy and a LQR design approach is used to compute the desired associated closed-loop behavior and improve performance. Extensive experiments on various balancing and tracking tasks show very robust performance in the face of unknown disturbances, even when the humanoid is standing on one foot. Our results demonstrate that hierarchical inverse dynamics together with momentum control can be efficiently used for feedback control under real robot conditions.

am mg

link (url) DOI [BibTex]


no image
Bioinspired Motor Control for Articulated Robots [From the Guest Editors]

Vitiello, Nicola, Ijspeert, Auke J, Schaal, S.

IEEE Robotics {\&} Automation Magazine, 23(1):20-21, 2016 (article)

am

[BibTex]

[BibTex]

2015


no image
Active Reward Learning with a Novel Acquisition Function

Daniel, C., Kroemer, O., Viering, M., Metz, J., Peters, J.

Autonomous Robots, 39(3):389-405, 2015 (article)

am ei

link (url) DOI [BibTex]

2015


link (url) DOI [BibTex]


no image
Learning Movement Primitive Attractor Goals and Sequential Skills from Kinesthetic Demonstrations

Manschitz, S., Kober, J., Gienger, M., Peters, J.

Robotics and Autonomous Systems, 74, Part A, pages: 97-107, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Bayesian Optimization for Learning Gaits under Uncertainty

Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.

Annals of Mathematics and Artificial Intelligence, pages: 1-19, 2015 (article)

am ei

DOI [BibTex]

DOI [BibTex]

2012


no image
From Dynamic Movement Primitives to Associative Skill Memories

Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., Schaal, S.

Robotics and Autonomous Systems, 2012 (article)

am

Project Page [BibTex]

2012


Project Page [BibTex]


no image
Model-free reinforcement learning of impedance control in stochastic environments

Stulp, Freek, Buchli, Jonas, Ellmer, Alice, Mistry, Michael, Theodorou, Evangelos A., Schaal, S.

Autonomous Mental Development, IEEE Transactions on, 4(4):330-341, 2012 (article)

am

[BibTex]

[BibTex]


no image
Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation

Stulp, F., Theodorou, E., Schaal, S.

IEEE Transactions on Robotics, 2012 (article)

am

[BibTex]

[BibTex]

2005


no image
Composite adaptive control with locally weighted statistical learning

Nakanishi, J., Farrell, J. A., Schaal, S.

Neural Networks, 18(1):71-90, January 2005, clmc (article)

Abstract
This paper introduces a provably stable learning adaptive control framework with statistical learning. The proposed algorithm employs nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric regression technique. Local models are allocated as necessary and their parameters are optimized on-line. Inspired by composite adaptive control methods, the proposed learning adaptive control algorithm uses both the tracking error and the estimation error to update the parameters. We first discuss statistical learning of nonlinear functions, and motivate our choice of the locally weighted learning framework. Second, we begin with a class of first order SISO systems for theoretical development of our learning adaptive control framework, and present a stability proof including a parameter projection method that is needed to avoid potential singularities during adaptation. Then, we generalize our adaptive controller to higher order SISO systems, and discuss further extension to MIMO problems. Finally, we evaluate our theoretical control framework in numerical simulations to illustrate the effectiveness of the proposed learning adaptive controller for rapid convergence and high accuracy of control.

am

link (url) [BibTex]

2005


link (url) [BibTex]


no image
A model of smooth pursuit based on learning of the target dynamics using only retinal signals

Shibata, T., Tabata, H., Schaal, S., Kawato, M.

Neural Networks, 18, pages: 213-225, 2005, clmc (article)

Abstract
While the predictive nature of the primate smooth pursuit system has been evident through several behavioural and neurophysiological experiments, few models have attempted to explain these results comprehensively. The model we propose in this paper in line with previous models employing optimal control theory; however, we hypothesize two new issues: (1) the medical superior temporal (MST) area in the cerebral cortex implements a recurrent neural network (RNN) in order to predict the current or future target velocity, and (2) a forward model of the target motion is acquired by on-line learning. We use stimulation studies to demonstrate how our new model supports these hypotheses.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Parametric and Non-Parametric approaches for nonlinear tracking of moving objects

Hidaka, Y, Theodorou, E.

Technical Report-2005-1, 2005, clmc (article)

am

PDF [BibTex]

PDF [BibTex]

2003


no image
Computational approaches to motor learning by imitation

Schaal, S., Ijspeert, A., Billard, A.

Philosophical Transaction of the Royal Society of London: Series B, Biological Sciences, 358(1431):537-547, 2003, clmc (article)

Abstract
Movement imitation requires a complex set of mechanisms that map an observed movement of a teacher onto one's own movement apparatus. Relevant problems include movement recognition, pose estimation, pose tracking, body correspondence, coordinate transformation from external to egocentric space, matching of observed against previously learned movement, resolution of redundant degrees-of-freedom that are unconstrained by the observation, suitable movement representations for imitation, modularization of motor control, etc. All of these topics by themselves are active research problems in computational and neurobiological sciences, such that their combination into a complete imitation system remains a daunting undertaking - indeed, one could argue that we need to understand the complete perception-action loop. As a strategy to untangle the complexity of imitation, this paper will examine imitation purely from a computational point of view, i.e. we will review statistical and mathematical approaches that have been suggested for tackling parts of the imitation problem, and discuss their merits, disadvantages and underlying principles. Given the focus on action recognition of other contributions in this special issue, this paper will primarily emphasize the motor side of imitation, assuming that a perceptual system has already identified important features of a demonstrated movement and created their corresponding spatial information. Based on the formalization of motor control in terms of control policies and their associated performance criteria, useful taxonomies of imitation learning can be generated that clarify different approaches and future research directions.

am

link (url) [BibTex]

2003


link (url) [BibTex]