Header logo is


2010


no image
Lack of Discriminatory Function for Endoscopy Skills on a Computer-based Simulator

Kim, S., Spencer, G., Makar, G., Ahmad, N., Jaffe, D., Ginsberg, G., Kuchenbecker, K. J., Kochman, M.

Surgical Endoscopy, 24(12):3008-3015, December 2010 (article)

hi

[BibTex]

2010


[BibTex]


no image
VerroTouch: High-Frequency Acceleration Feedback for Telerobotic Surgery

Kuchenbecker, K. J., Gewirtz, J., McMahan, W., Standish, D., Martin, P., Bohren, J., Mendoza, P. J., Lee, D. I.

Hands-on demonstration presented at EuroHaptics, Amsterdam, Netherlands, Amsterdam, Netherlands, July 2010 (misc)

hi

[BibTex]

[BibTex]


no image
TexturePad: Realistic Rendering of Haptic Textures

Romano, J. M., Landin, N., McMahan, W., Kuchenbecker, K. J.

Hands-on demonstration presented at EuroHaptics, Amsterdam, Netherlands, July 2010 (misc)

hi

[BibTex]

[BibTex]


no image
VerroTouch: High-Frequency Acceleration Feedback for Telerobotic Surgery

Kuchenbecker, K. J., Gewirtz, J., McMahan, W., Standish, D., Martin, P., Bohren, J., Mendoza, P. J., Lee, D. I.

In Haptics: Generating and Perceiving Tangible Sensations, Proc. EuroHaptics, Part I, 6191, pages: 189-196, Lecture Notes in Computer Science, Springer, Amsterdam, Netherlands, July 2010, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Identifying the Role of Proprioception in Upper-Limb Prosthesis Control: Studies on Targeted Motion

Blank, A., Okamura, A. M., Kuchenbecker, K. J.

ACM Transactions on Applied Perception, 7(3):1-23, June 2010 (article)

hi

[BibTex]

[BibTex]


no image
Automatic Filter Design for Synthesis of Haptic Textures from Recorded Acceleration Data

Romano, J. M., Yoshioka, T., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Robotics and Automation, pages: 1815-1821, Anchorage, Alaska, USA, May 2010, Oral presentation given by Romano (inproceedings)

hi

[BibTex]

[BibTex]


no image
Control of a High Fidelity Ungrounded Torque Feedback Device: The iTorqU 2.1

Winfree, K. N., Romano, J. M., Gewirtz, J., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Robotics and Automation, pages: 1347-1352, Anchorage, Alaska, May 2010, Oral presentation given by Winfree (inproceedings)

hi

[BibTex]

[BibTex]


no image
Realistic Haptic Contacts and Textures for Tablet Computing

Romano, J. M., Kuchenbecker, K. J.

Hands-on demonstration presented at the Stanford Medical Innovation Conference on Medical Robotics, Stanford, California, April 2010 (misc)

hi

[BibTex]

[BibTex]


no image
High-Frequency Tactile Feedback for the da Vinci Surgical System

Standish, D., Gewirtz, J., McMahan, W., Martin, P., Kuchenbecker, K. J.

Hands-on demonstration presented at the Stanford Medical Innovation Conference on Medical Robotics, April 2010 (misc)

hi

[BibTex]

[BibTex]


no image
High-Frequency Tactile Feedback for the da Vinci Surgical System

Standish, D., Gewirtz, J., McMahan, W., Martin, P., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Waltham, Massachusetts, March 2010 (misc)

hi

[BibTex]

[BibTex]


no image
The Haptic Board

Jiang, Z., Bhoite, M., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Waltham, Massachusetts, USA, March 2010 (misc)

hi

[BibTex]

[BibTex]


no image
High Frequency Acceleration Feedback Significantly Increases the Realism of Haptically Rendered Textured Surfaces

McMahan, W., Romano, J. M., Rahuman, A. M. A., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 141-148, Waltham, Massachusetts, March 2010, Oral presentation given by McMahan (inproceedings)

hi

[BibTex]

[BibTex]


no image
Spatially distributed tactile feedback for kinesthetic motion guidance

Kapur, P., Jensen, M., Buxbaum, L. J., Jax, S. A., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 519-526, Waltham, Massachusetts, USA, March 2010, Poster presentation given by Kapur. {F}inalist for Best Poster Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Tactile Gaming Vest (TGV)

Palan, S., Wang, R., Naukam, N., Li, E., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Waltham, Massachusetts, March 2010 (misc)

hi

[BibTex]

[BibTex]


no image
Realistic Haptic Contacts and Textures for Tablet Computing

Romano, J. M., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Waltham, Massachusetts, March 2010, {B}est Teaser Award (misc)

hi

[BibTex]

[BibTex]


no image
GPU-Based Haptic Rendering of 3D Smoke

Yang, M., Lu, J., Safonova, A., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Waltham, Massachusetts, March 2010 (misc)

hi

[BibTex]

[BibTex]


no image
Dimensional Reduction of High-Frequency Accelerations for Haptic Rendering

Landin, N., Romano, J. M., McMahan, W., Kuchenbecker, K. J.

In Haptics: Generating and Perceiving Tangible Sensations: Part II (Proceedings of EuroHaptics), 6192, pages: 79-86, Lecture Notes in Computer Science, Springer, Amsterdam, Netherlands, 2010, Poster presentation given by Landin (inproceedings)

hi

[BibTex]

[BibTex]


no image
VerroTouch: A Vibrotactile Feedback System for Minimally Invasive Robotic Surgery

Kuchenbecker, K. J., Gewirtz, J., McMahan, W., Standish, D., Bohren, J., Martin, P., Wedmid, A., Mendoza, P. J., Lee, D. I.

In Proc. 28th World Congress of Endourology, 2010, PS8-14. Poster presentation given by Wedmid (inproceedings)

hi

[BibTex]

[BibTex]


no image
Constrained Accelerations for Controlled Geometric Reduction: Sagittal-Plane Decoupling for Bipedal Locomotion

Gregg, R., Righetti, L., Buchli, J., Schaal, S.

In 2010 10th IEEE-RAS International Conference on Humanoid Robots, pages: 1-7, IEEE, Nashville, USA, 2010 (inproceedings)

Abstract
Energy-shaping control methods have produced strong theoretical results for asymptotically stable 3D bipedal dynamic walking in the literature. In particular, geometric controlled reduction exploits robot symmetries to control momentum conservation laws that decouple the sagittal-plane dynamics, which are easier to stabilize. However, the associated control laws require high-dimensional matrix inverses multiplied with complicated energy-shaping terms, often making these control theories difficult to apply to highly-redundant humanoid robots. This paper presents a first step towards the application of energy-shaping methods on real robots by casting controlled reduction into a framework of constrained accelerations for inverse dynamics control. By representing momentum conservation laws as constraints in acceleration space, we construct a general expression for desired joint accelerations that render the constraint surface invariant. By appropriately choosing an orthogonal projection, we show that the unconstrained (reduced) dynamics are decoupled from the constrained dynamics. Any acceleration-based controller can then be used to stabilize this planar subsystem, including passivity-based methods. The resulting control law is surprisingly simple and represents a practical way to employ control theoretic stability results in robotic platforms. Simulated walking of a 3D compass-gait biped show correspondence between the new and original controllers, and simulated motions of a 16-DOF humanoid demonstrate the applicability of this method.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inverse dynamics with optimal distribution of ground reaction forces for legged robot

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In Proceedings of the 13th International Conference on Climbing and Walking Robots (CLAWAR), pages: 580-587, Nagoya, Japan, sep 2010 (inproceedings)

Abstract
Contact interaction with the environment is crucial in the design of locomotion controllers for legged robots, to prevent slipping for example. Therefore, it is of great importance to be able to control the effects of the robots movements on the contact reaction forces. In this contribution, we extend a recent inverse dynamics algorithm for floating base robots to optimize the distribution of contact forces while achieving precise trajectory tracking. The resulting controller is algorithmically simple as compared to other approaches. Numerical simulations show that this result significantly increases the range of possible movements of a humanoid robot as compared to the previous inverse dynamics algorithm. We also present a simplification of the result where no inversion of the inertia matrix is needed which is particularly relevant for practical use on a real robot. Such an algorithm becomes interesting for agile locomotion of robots on difficult terrains where the contacts with the environment are critical, such as walking over rough or slippery terrain.

am mg

DOI [BibTex]

DOI [BibTex]

2007


no image
The power of external mentors for women pursuing academic careers in engineering and science: Stories of MentorNet ACE and its Proteges and Mentors

Muller, C. B., Smith, E. H. B., Chou-Green, J., Daniels-Race, T., Drummond, A., Kuchenbecker, K. J.

In Proc. Women in Engineering Programs and Advocates Network (WEPAN) National Conference, Lake Buena Vista, Florida, USA, June 2007, Oral presentation given by Muller (inproceedings)

hi

[BibTex]

2007


[BibTex]


no image
Effects of Visual and Proprioceptive Position Feedback on Human Control of Targeted Movement

Kuchenbecker, K. J., Gurari, N., Okamura, A. M.

In Proc. IEEE International Conference on Rehabilitation Robotics, pages: 513-524, Noordwijk, Netherlands, June 2007, Oral and poster presentations given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Quantifying the value of visual and haptic position feedback in force-based motion control

Kuchenbecker, K. J., Gurari, N., Okamura, A. M.

In Proc. IEEE World Haptics Conference, pages: 561-562, Tsukuba, Japan, March 2007, Poster presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Comparing Visual and Haptic Position Feedback

Kuchenbecker, K. J., Gurari, N., Okamura, A. M.

Hands-on demonstration at IEEE World Haptics Conference, Tsukuba, Japan, March 2007 (misc)

hi

[BibTex]

[BibTex]


no image
Shaping event-based haptic transients via an improved understanding of real contact dynamics

Fiene, J. P., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 170-175, Tsukuba, Japan, March 2007, Oral presentation given by Fiene. {B}est Haptic Technology Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Hand placement during quadruped locomotion in a humanoid robot: A dynamical system approach

Degallier, S., Righetti, L., Ijspeert, A.

In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 2047-2052, IEEE, San Diego, USA, 2007 (inproceedings)

Abstract
Locomotion on an irregular surface is a challenging task in robotics. Among different problems to solve to obtain robust locomotion, visually guided locomotion and accurate foot placement are of crucial importance. Robust controllers able to adapt to sensory-motor feedbacks, in particular to properly place feet on specific locations, are thus needed. Dynamical systems are well suited for this task as any online modification of the parameters leads to a smooth adaptation of the trajectories, allowing a safe integration of sensory-motor feedback. In this contribution, as a first step in the direction of locomotion on irregular surfaces, we present a controller that allows hand placement during crawling in a simulated humanoid robot. The goal of the controller is to superimpose rhythmic movements for crawling with discrete (i.e. short-term) modulations of the hand placements to reach specific marks on the ground.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Lower body realization of the baby humanoid - ‘iCub’

Tsagarakis, N., Becchi, F., Righetti, L., Ijspeert, A., Caldwell, D.

In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3616-3622, IEEE, San Diego, USA, 2007 (inproceedings)

Abstract
Nowadays, the understanding of the human cognition and it application to robotic systems forms a great challenge of research. The iCub is a robotic platform that was developed within the RobotCub European project to provide the cognition research community with an open baby- humanoid platform for understanding and development of cognitive systems. In this paper we present the design requirements and mechanical realization of the lower body developed for the "iCub". In particular the leg and the waist mechanisms adopted for lower body to match the size and physical abilities of a 2 frac12 year old human baby are introduced.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
iCub - The Design and Realization of an Open Humanoid Platform for Cognitive and Neuroscience Research

Tsagarakis, N., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, F., Righetti, L., Santos-Victor, J., Ijspeert, A., Carrozza, M., Caldwell, D.

Advanced Robotics, 21(10):1151-1175, 2007 (article)

Abstract
The development of robotic cognition and the advancement of understanding of human cognition form two of the current greatest challenges in robotics and neuroscience, respectively. The RobotCub project aims to develop an embodied robotic child (iCub) with the physical (height 90 cm and mass less than 23 kg) and ultimately cognitive abilities of a 2.5-year-old human child. The iCub will be a freely available open system which can be used by scientists in all cognate disciplines from developmental psychology to epigenetic robotics to enhance understanding of cognitive systems through the study of cognitive development. The iCub will be open both in software, but more importantly in all aspects of the hardware and mechanical design. In this paper the design of the mechanisms and structures forming the basic 'body' of the iCub are described. The papers considers kinematic structures dynamic design criteria, actuator specification and selection, and detailed mechanical and electronic design. The paper concludes with tests of the performance of sample joints, and comparison of these results with the design requirements and simulation projects.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]