Header logo is


2015


Scalable Robust Principal Component Analysis using {Grassmann} Averages
Scalable Robust Principal Component Analysis using Grassmann Averages

Hauberg, S., Feragen, A., Enficiaud, R., Black, M.

IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), December 2015 (article)

Abstract
In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA are not scalable. We note that in a zero-mean dataset, each observation spans a one-dimensional subspace, giving a point on the Grassmann manifold. We show that the average subspace corresponds to the leading principal component for Gaussian data. We provide a simple algorithm for computing this Grassmann Average (GA), and show that the subspace estimate is less sensitive to outliers than PCA for general distributions. Because averages can be efficiently computed, we immediately gain scalability. We exploit robust averaging to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. The resulting Trimmed Grassmann Average (TGA) is appropriate for computer vision because it is robust to pixel outliers. The algorithm has linear computational complexity and minimal memory requirements. We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie; a task beyond any current method. Source code is available online.

ps sf

preprint pdf from publisher supplemental Project Page [BibTex]

2015


preprint pdf from publisher supplemental Project Page [BibTex]


{SMPL}: A Skinned Multi-Person Linear Model
SMPL: A Skinned Multi-Person Linear Model

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M. J.

ACM Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1-248:16, ACM, New York, NY, October 2015 (article)

Abstract
We present a learned model of human body shape and pose-dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex-based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity-dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. We quantitatively evaluate variants of SMPL using linear or dual-quaternion blend skinning and show that both are more accurate than a Blend-SCAPE model trained on the same data. We also extend SMPL to realistically model dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

ps

pdf video code/model errata DOI Project Page Project Page [BibTex]

pdf video code/model errata DOI Project Page Project Page [BibTex]


Dyna: A Model of Dynamic Human Shape in Motion
Dyna: A Model of Dynamic Human Shape in Motion

Pons-Moll, G., Romero, J., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 34(4):120:1-120:14, ACM, August 2015 (article)

Abstract
To look human, digital full-body avatars need to have soft tissue deformations like those of real people. We learn a model of soft-tissue deformations from examples using a high-resolution 4D capture system and a method that accurately registers a template mesh to sequences of 3D scans. Using over 40,000 scans of ten subjects, we learn how soft tissue motion causes mesh triangles to deform relative to a base 3D body model. Our Dyna model uses a low-dimensional linear subspace to approximate soft-tissue deformation and relates the subspace coefficients to the changing pose of the body. Dyna uses a second-order auto-regressive model that predicts soft-tissue deformations based on previous deformations, the velocity and acceleration of the body, and the angular velocities and accelerations of the limbs. Dyna also models how deformations vary with a person’s body mass index (BMI), producing different deformations for people with different shapes. Dyna realistically represents the dynamics of soft tissue for previously unseen subjects and motions. We provide tools for animators to modify the deformations and apply them to new stylized characters.

ps

pdf preprint video data DOI Project Page Project Page [BibTex]

pdf preprint video data DOI Project Page Project Page [BibTex]


Linking Objects to Actions: Encoding of Target Object and Grasping Strategy in Primate Ventral Premotor Cortex
Linking Objects to Actions: Encoding of Target Object and Grasping Strategy in Primate Ventral Premotor Cortex

Vargas-Irwin, C. E., Franquemont, L., Black, M. J., Donoghue, J. P.

Journal of Neuroscience, 35(30):10888-10897, July 2015 (article)

Abstract
Neural activity in ventral premotor cortex (PMv) has been associated with the process of matching perceived objects with the motor commands needed to grasp them. It remains unclear how PMv networks can flexibly link percepts of objects affording multiple grasp options into a final desired hand action. Here, we use a relational encoding approach to track the functional state of PMv neuronal ensembles in macaque monkeys through the process of passive viewing, grip planning, and grasping movement execution. We used objects affording multiple possible grip strategies. The task included separate instructed delay periods for object presentation and grip instruction. This approach allowed us to distinguish responses elicited by the visual presentation of the objects from those associated with selecting a given motor plan for grasping. We show that PMv continuously incorporates information related to object shape and grip strategy as it becomes available, revealing a transition from a set of ensemble states initially most closely related to objects, to a new set of ensemble patterns reflecting unique object-grip combinations. These results suggest that PMv dynamically combines percepts, gradually navigating toward activity patterns associated with specific volitional actions, rather than directly mapping perceptual object properties onto categorical grip representations. Our results support the idea that PMv is part of a network that dynamically computes motor plans from perceptual information. Significance Statement: The present work demonstrates that the activity of groups of neurons in primate ventral premotor cortex reflects information related to visually presented objects, as well as the motor strategy used to grasp them, linking individual objects to multiple possible grips. PMv could provide useful control signals for neuroprosthetic assistive devices designed to interact with objects in a flexible way.

ps

publisher link DOI Project Page [BibTex]

publisher link DOI Project Page [BibTex]


Multi-view and 3D Deformable Part Models
Multi-view and 3D Deformable Part Models

Pepik, B., Stark, M., Gehler, P., Schiele, B.

Pattern Analysis and Machine Intelligence, 37(11):14, IEEE, March 2015 (article)

Abstract
As objects are inherently 3-dimensional, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2], 3D object classes [3], Pascal3D+ [4], Pascal VOC 2007 [5], EPFL multi-view cars [6]).

ps

DOI Project Page [BibTex]

DOI Project Page [BibTex]


{Spike train SIMilarity Space} ({SSIMS}): A framework for single neuron and ensemble data analysis
Spike train SIMilarity Space (SSIMS): A framework for single neuron and ensemble data analysis

Vargas-Irwin, C. E., Brandman, D. M., Zimmermann, J. B., Donoghue, J. P., Black, M. J.

Neural Computation, 27(1):1-31, MIT Press, January 2015 (article)

Abstract
We present a method to evaluate the relative similarity of neural spiking patterns by combining spike train distance metrics with dimensionality reduction. Spike train distance metrics provide an estimate of similarity between activity patterns at multiple temporal resolutions. Vectors of pair-wise distances are used to represent the intrinsic relationships between multiple activity patterns at the level of single units or neuronal ensembles. Dimensionality reduction is then used to project the data into concise representations suitable for clustering analysis as well as exploratory visualization. Algorithm performance and robustness are evaluated using multielectrode ensemble activity data recorded in behaving primates. We demonstrate how Spike train SIMilarity Space (SSIMS) analysis captures the relationship between goal directions for an 8-directional reaching task and successfully segregates grasp types in a 3D grasping task in the absence of kinematic information. The algorithm enables exploration of virtually any type of neural spiking (time series) data, providing similarity-based clustering of neural activity states with minimal assumptions about potential information encoding models.

ps

pdf: publisher site pdf: author's proof DOI Project Page [BibTex]

pdf: publisher site pdf: author's proof DOI Project Page [BibTex]


no image
Active Reward Learning with a Novel Acquisition Function

Daniel, C., Kroemer, O., Viering, M., Metz, J., Peters, J.

Autonomous Robots, 39(3):389-405, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Metric Regression Forests for Correspondence Estimation
Metric Regression Forests for Correspondence Estimation

Pons-Moll, G., Taylor, J., Shotton, J., Hertzmann, A., Fitzgibbon, A.

International Journal of Computer Vision, pages: 1-13, 2015 (article)

ps

springer PDF Project Page [BibTex]

springer PDF Project Page [BibTex]


no image
Learning Movement Primitive Attractor Goals and Sequential Skills from Kinesthetic Demonstrations

Manschitz, S., Kober, J., Gienger, M., Peters, J.

Robotics and Autonomous Systems, 74, Part A, pages: 97-107, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Bayesian Optimization for Learning Gaits under Uncertainty

Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.

Annals of Mathematics and Artificial Intelligence, pages: 1-19, 2015 (article)

am ei

DOI [BibTex]

DOI [BibTex]

2009


Valero-Cuevas, F., Hoffmann, H., Kurse, M. U., Kutch, J. J., Theodorou, E. A.

IEEE Reviews in Biomedical Engineering – (All authors have equally contributed), (2):110?135, 2009, clmc (article)

Abstract
Computational models of the neuromuscular system hold the potential to allow us to reach a deeper understanding of neuromuscular function and clinical rehabilitation by complementing experimentation. By serving as a means to distill and explore specific hypotheses, computational models emerge from prior experimental data and motivate future experimental work. Here we review computational tools used to understand neuromuscular function including musculoskeletal modeling, machine learning, control theory, and statistical model analysis. We conclude that these tools, when used in combination, have the potential to further our understanding of neuromuscular function by serving as a rigorous means to test scientific hypotheses in ways that complement and leverage experimental data.

am

link (url) [BibTex]

2009


link (url) [BibTex]


no image
On-line learning and modulation of periodic movements with nonlinear dynamical systems

Gams, A., Ijspeert, A., Schaal, S., Lenarčič, J.

Autonomous Robots, 27(1):3-23, 2009, clmc (article)

Abstract
Abstract  The paper presents a two-layered system for (1) learning and encoding a periodic signal without any knowledge on its frequency and waveform, and (2) modulating the learned periodic trajectory in response to external events. The system is used to learn periodic tasks on a humanoid HOAP-2 robot. The first layer of the system is a dynamical system responsible for extracting the fundamental frequency of the input signal, based on adaptive frequency oscillators. The second layer is a dynamical system responsible for learning of the waveform based on a built-in learning algorithm. By combining the two dynamical systems into one system we can rapidly teach new trajectories to robots without any knowledge of the frequency of the demonstration signal. The system extracts and learns only one period of the demonstration signal. Furthermore, the trajectories are robust to perturbations and can be modulated to cope with a dynamic environment. The system is computationally inexpensive, works on-line for any periodic signal, requires no additional signal processing to determine the frequency of the input signal and can be applied in parallel to multiple dimensions. Additionally, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, such as hand-generated signals and human demonstrations.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Local dimensionality reduction for non-parametric regression

Hoffman, H., Schaal, S., Vijayakumar, S.

Neural Processing Letters, 2009, clmc (article)

Abstract
Locally-weighted regression is a computationally-efficient technique for non-linear regression. However, for high-dimensional data, this technique becomes numerically brittle and computationally too expensive if many local models need to be maintained simultaneously. Thus, local linear dimensionality reduction combined with locally-weighted regression seems to be a promising solution. In this context, we review linear dimensionality-reduction methods, compare their performance on nonparametric locally-linear regression, and discuss their ability to extend to incremental learning. The considered methods belong to the following three groups: (1) reducing dimensionality only on the input data, (2) modeling the joint input-output data distribution, and (3) optimizing the correlation between projection directions and output data. Group 1 contains principal component regression (PCR); group 2 contains principal component analysis (PCA) in joint input and output space, factor analysis, and probabilistic PCA; and group 3 contains reduced rank regression (RRR) and partial least squares (PLS) regression. Among the tested methods, only group 3 managed to achieve robust performance even for a non-optimal number of components (factors or projection directions). In contrast, group 1 and 2 failed for fewer components since these methods rely on the correct estimate of the true intrinsic dimensionality. In group 3, PLS is the only method for which a computationally-efficient incremental implementation exists. Thus, PLS appears to be ideally suited as a building block for a locally-weighted regressor in which projection directions are incrementally added on the fly.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Incorporating Muscle Activation-Contraction dynamics to an optimal control framework for finger movements

Theodorou, Evangelos A., Valero-Cuevas, Francisco J.

Abstracts of Neural Control of Movement Conference (NCM 2009), 2009, clmc (article)

Abstract
Recent experimental and theoretical work [1] investigated the neural control of contact transition between motion and force during tapping with the index finger as a nonlinear optimization problem. Such transitions from motion to well-directed contact force are a fundamental part of dexterous manipulation. There are 3 alternative hypotheses of how this transition could be accomplished by the nervous system as a function of changes in direction and magnitude of the torque vector controlling the finger. These hypotheses are 1) an initial change in direction with a subsequent change in magnitude of the torque vector; 2) an initial change in magnitude with a subsequent directional change of the torque vector; and 3) a simultaneous and proportionally equal change of both direction and magnitude of the torque vector. Experimental work in [2] shows that the nervous system selects the first strategy, and in [1] we suggest that this may in fact be the optimal strategy. In [4] the framework of Iterative Linear Quadratic Optimal Regulator (ILQR) was extended to incorporate motion and force control. However, our prior simulation work assumed direct and instantaneous control of joint torques, which ignores the known delays and filtering properties of skeletal muscle. In this study, we implement an ILQR controller for a more biologically plausible biomechanical model of the index finger than [4], and add activation-contraction dynamics to the system to simulate muscle function. The planar biomechanical model includes the kinematics of the 3 joints while the applied torques are driven by activation?contraction dynamics with biologically plausible time constants [3]. In agreement with our experimental work [2], the task is to, within 500 ms, move the finger from a given resting configuration to target configuration with a desired terminal velocity. ILQR does not only stabilize the finger dynamics according to the objective function, but it also generates smooth joint space trajectories with minimal tuning and without an a-priori initial control policy (which is difficult to find for highly dimensional biomechanical systems). Furthemore, the use of this optimal control framework and the addition of activation-contraction dynamics considers the full nonlinear dynamics of the index finger and produces a sequence of postures which are compatible with experimental motion data [2]. These simulations combined with prior experimental results suggest that optimal control is a strong candidate for the generation of finger movements prior to abrupt motion-to-force transitions. This work is funded in part by grants NIH R01 0505520 and NSF EFRI-0836042 to Dr. Francisco J. Valero- Cuevas 1 Venkadesan M, Valero-Cuevas FJ. 
Effects of neuromuscular lags on controlling contact transitions. 
Philosophical Transactions of the Royal Society A: 2008. 2 Venkadesan M, Valero-Cuevas FJ. 
Neural Control of Motion-to-Force Transitions with the Fingertip. 
J. Neurosci., Feb 2008; 28: 1366 - 1373; 3 Zajac. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng, 17 4. Weiwei Li., Francisco Valero Cuevas: ?Linear Quadratic Optimal Control of Contact Transition with Fingertip ? ACC 2009

am

PDF [BibTex]

PDF [BibTex]


no image
On-line learning and modulation of periodic movements with nonlinear dynamical systems

Gams, A., Ijspeert, A., Schaal, S., Lenarčič, J.

Autonomous Robots, 27(1):3-23, 2009, clmc (article)

Abstract
Abstract  The paper presents a two-layered system for (1) learning and encoding a periodic signal without any knowledge on its frequency and waveform, and (2) modulating the learned periodic trajectory in response to external events. The system is used to learn periodic tasks on a humanoid HOAP-2 robot. The first layer of the system is a dynamical system responsible for extracting the fundamental frequency of the input signal, based on adaptive frequency oscillators. The second layer is a dynamical system responsible for learning of the waveform based on a built-in learning algorithm. By combining the two dynamical systems into one system we can rapidly teach new trajectories to robots without any knowledge of the frequency of the demonstration signal. The system extracts and learns only one period of the demonstration signal. Furthermore, the trajectories are robust to perturbations and can be modulated to cope with a dynamic environment. The system is computationally inexpensive, works on-line for any periodic signal, requires no additional signal processing to determine the frequency of the input signal and can be applied in parallel to multiple dimensions. Additionally, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, such as hand-generated signals and human demonstrations.

am

link (url) [BibTex]

link (url) [BibTex]

2003


no image
Computational approaches to motor learning by imitation

Schaal, S., Ijspeert, A., Billard, A.

Philosophical Transaction of the Royal Society of London: Series B, Biological Sciences, 358(1431):537-547, 2003, clmc (article)

Abstract
Movement imitation requires a complex set of mechanisms that map an observed movement of a teacher onto one's own movement apparatus. Relevant problems include movement recognition, pose estimation, pose tracking, body correspondence, coordinate transformation from external to egocentric space, matching of observed against previously learned movement, resolution of redundant degrees-of-freedom that are unconstrained by the observation, suitable movement representations for imitation, modularization of motor control, etc. All of these topics by themselves are active research problems in computational and neurobiological sciences, such that their combination into a complete imitation system remains a daunting undertaking - indeed, one could argue that we need to understand the complete perception-action loop. As a strategy to untangle the complexity of imitation, this paper will examine imitation purely from a computational point of view, i.e. we will review statistical and mathematical approaches that have been suggested for tackling parts of the imitation problem, and discuss their merits, disadvantages and underlying principles. Given the focus on action recognition of other contributions in this special issue, this paper will primarily emphasize the motor side of imitation, assuming that a perceptual system has already identified important features of a demonstrated movement and created their corresponding spatial information. Based on the formalization of motor control in terms of control policies and their associated performance criteria, useful taxonomies of imitation learning can be generated that clarify different approaches and future research directions.

am

link (url) [BibTex]

2003


link (url) [BibTex]

2002


no image
Forward models in visuomotor control

Mehta, B., Schaal, S.

J Neurophysiol, 88(2):942-53, August 2002, clmc (article)

Abstract
In recent years, an increasing number of research projects investigated whether the central nervous system employs internal models in motor control. While inverse models in the control loop can be identified more readily in both motor behavior and the firing of single neurons, providing direct evidence for the existence of forward models is more complicated. In this paper, we will discuss such an identification of forward models in the context of the visuomotor control of an unstable dynamic system, the balancing of a pole on a finger. Pole balancing imposes stringent constraints on the biological controller, as it needs to cope with the large delays of visual information processing while keeping the pole at an unstable equilibrium. We hypothesize various model-based and non-model-based control schemes of how visuomotor control can be accomplished in this task, including Smith Predictors, predictors with Kalman filters, tapped-delay line control, and delay-uncompensated control. Behavioral experiments with human participants allow exclusion of most of the hypothesized control schemes. In the end, our data support the existence of a forward model in the sensory preprocessing loop of control. As an important part of our research, we will provide a discussion of when and how forward models can be identified and also the possible pitfalls in the search for forward models in control.

am

link (url) [BibTex]

2002


link (url) [BibTex]


no image
Scalable techniques from nonparameteric statistics for real-time robot learning

Schaal, S., Atkeson, C. G., Vijayakumar, S.

Applied Intelligence, 17(1):49-60, 2002, clmc (article)

Abstract
Locally weighted learning (LWL) is a class of techniques from nonparametric statistics that provides useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of robotic systems. This paper introduces several LWL algorithms that have been tested successfully in real-time learning of complex robot tasks. We discuss two major classes of LWL, memory-based LWL and purely incremental LWL that does not need to remember any data explicitly. In contrast to the traditional belief that LWL methods cannot work well in high-dimensional spaces, we provide new algorithms that have been tested on up to 90 dimensional learning problems. The applicability of our LWL algorithms is demonstrated in various robot learning examples, including the learning of devil-sticking, pole-balancing by a humanoid robot arm, and inverse-dynamics learning for a seven and a 30 degree-of-freedom robot. In all these examples, the application of our statistical neural networks techniques allowed either faster or more accurate acquisition of motor control than classical control engineering.

am

link (url) [BibTex]

link (url) [BibTex]

2001


no image
Synchronized robot drumming by neural oscillator

Kotosaka, S., Schaal, S.

Journal of the Robotics Society of Japan, 19(1):116-123, 2001, clmc (article)

Abstract
Sensory-motor integration is one of the key issues in robotics. In this paper, we propose an approach to rhythmic arm movement control that is synchronized with an external signal based on exploiting a simple neural oscillator network. Trajectory generation by the neural oscillator is a biologically inspired method that can allow us to generate a smooth and continuous trajectory. The parameter tuning of the oscillators is used to generate a synchronized movement with wide intervals. We adopted the method for the drumming task as an example task. By using this method, the robot can realize synchronized drumming with wide drumming intervals in real time. The paper also shows the experimental results of drumming by a humanoid robot.

am

[BibTex]

2001


[BibTex]


no image
Origins and violations of the 2/3 power law in rhythmic 3D movements

Schaal, S., Sternad, D.

Experimental Brain Research, 136, pages: 60-72, 2001, clmc (article)

Abstract
The 2/3 power law, the nonlinear relationship between tangential velocity and radius of curvature of the endeffector trajectory, has been suggested as a fundamental constraint of the central nervous system in the formation of rhythmic endpoint trajectories. However, studies on the 2/3 power law have largely been confined to planar drawing patterns of relatively small size. With the hypothesis that this strategy overlooks nonlinear effects that are constitutive in movement generation, the present experiments tested the validity of the power law in elliptical patterns which were not confined to a planar surface and which were performed by the unconstrained 7-DOF arm with significant variations in pattern size and workspace orientation. Data were recorded from five human subjects where the seven joint angles and the endpoint trajectories were analyzed. Additionally, an anthropomorphic 7-DOF robot arm served as a "control subject" whose endpoint trajectories were generated on the basis of the human joint angle data, modeled as simple harmonic oscillations. Analyses of the endpoint trajectories demonstrate that the power law is systematically violated with increasing pattern size, in both exponent and the goodness of fit. The origins of these violations can be explained analytically based on smooth rhythmic trajectory formation and the kinematic structure of the human arm. We conclude that in unconstrained rhythmic movements, the power law seems to be a by-product of a movement system that favors smooth trajectories, and that it is unlikely to serve as a primary movement generating principle. Our data rather suggests that subjects employed smooth oscillatory pattern generators in joint space to realize the required movement patterns.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Graph-matching vs. entropy-based methods for object detection
Neural Networks, 14(3):345-354, 2001, clmc (article)

Abstract
Labeled Graph Matching (LGM) has been shown successful in numerous ob-ject vision tasks. This method is the basis for arguably the best face recognition system in the world. We present an algorithm for visual pattern recognition that is an extension of LGM ("LGM+"). We compare the performance of LGM and LGM+ algorithms with a state of the art statistical method based on Mutual Information Maximization (MIM). We present an adaptation of the MIM method for multi-dimensional Gabor wavelet features. The three pattern recognition methods were evaluated on an object detection task, using a set of stimuli on which none of the methods had been tested previously. The results indicate that while the performance of the MIM method operating upon Gabor wavelets is superior to the same method operating on pixels and to LGM, it is surpassed by LGM+. LGM+ offers a significant improvement in performance over LGM without losing LGMâ??s virtues of simplicity, biological plausibility, and a computational cost that is 2-3 orders of magnitude lower than that of the MIM algorithm. 

am

link (url) [BibTex]

link (url) [BibTex]


no image
Biomimetic gaze stabilization based on feedback-error learning with nonparametric regression networks

Shibata, T., Schaal, S.

Neural Networks, 14(2):201-216, 2001, clmc (article)

Abstract
Oculomotor control in a humanoid robot faces similar problems as biological oculomotor systems, i.e. the stabilization of gaze in face of unknown perturbations of the body, selective attention, stereo vision, and dealing with large information processing delays. Given the nonlinearities of the geometry of binocular vision as well as the possible nonlinearities of the oculomotor plant, it is desirable to accomplish accurate control of these behaviors through learning approaches. This paper develops a learning control system for the phylogenetically oldest behaviors of oculomotor control, the stabilization reflexes of gaze. In a step-wise procedure, we demonstrate how control theoretic reasonable choices of control components result in an oculomotor control system that resembles the known functional anatomy of the primate oculomotor system. The core of the learning system is derived from the biologically inspired principle of feedback-error learning combined with a state-of-the-art non-parametric statistical learning network. With this circuitry, we demonstrate that our humanoid robot is able to acquire high performance visual stabilization reflexes after about 40 s of learning despite significant nonlinearities and processing delays in the system.

am

link (url) [BibTex]


no image
Fast learning of biomimetic oculomotor control with nonparametric regression networks (in Japanese)

Shibata, T., Schaal, S.

Journal of the Robotics Society of Japan, 19(4):468-479, 2001, clmc (article)

am

[BibTex]

[BibTex]


no image
Bouncing a ball: Tuning into dynamic stability

Sternad, D., Duarte, M., Katsumata, H., Schaal, S.

Journal of Experimental Psychology: Human Perception and Performance, 27(5):1163-1184, 2001, clmc (article)

Abstract
Rhythmically bouncing a ball with a racket was investigated and modeled with a nonlinear map. Model analyses provided a variable defining a dynamically stable solution that obviates computationally expensive corrections. Three experiments evaluated whether dynamic stability is optimized and what perceptual support is necessary for stable behavior. Two hypotheses were tested: (a) Performance is stable if racket acceleration is negative at impact, and (b) variability is lowest at an impact acceleration between -4 and -1 m/s2. In Experiment 1 participants performed the task, eyes open or closed, bouncing a ball confined to a 1-dimensional trajectory. Experiment 2 eliminated constraints on racket and ball trajectory. Experiment 3 excluded visual or haptic information. Movements were performed with negative racket accelerations in the range of highest stability. Performance with eyes closed was more variable, leaving acceleration unaffected. With haptic information, performance was more stable than with visual information alone.

am

[BibTex]

[BibTex]


no image
Biomimetic oculomotor control

Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.

Adaptive Behavior, 9(3/4):189-207, 2001, clmc (article)

Abstract
Oculomotor control in a humanoid robot faces similar problems as biological oculomotor systems, i.e., capturing targets accurately on a very narrow fovea, dealing with large delays in the control system, the stabilization of gaze in face of unknown perturbations of the body, selective attention, and the complexity of stereo vision. In this paper, we suggest control circuits to realize three of the most basic oculomotor behaviors and their integration - the vestibulo-ocular and optokinetic reflex (VOR-OKR) for gaze stabilization, smooth pursuit for tracking moving objects, and saccades for overt visual attention. Each of these behaviors and the mechanism for their integration was derived with inspiration from computational theories as well as behavioral and physiological data in neuroscience. Our implementations on a humanoid robot demonstrate good performance of the oculomotor behaviors, which proves to be a viable strategy to explore novel control mechanisms for humanoid robotics. Conversely, insights gained from our models have been able to directly influence views and provide new directions for computational neuroscience research.

am

link (url) [BibTex]

link (url) [BibTex]

2000


no image
A brachiating robot controller

Nakanishi, J., Fukuda, T., Koditschek, D. E.

IEEE Transactions on Robotics and Automation, 16(2):109-123, 2000, clmc (article)

Abstract
We report on our empirical studies of a new controller for a two-link brachiating robot. Motivated by the pendulum-like motion of an apeâ??s brachiation, we encode this task as the output of a â??target dynamical system.â? Numerical simulations indicate that the resulting controller solves a number of brachiation problems that we term the â??ladder,â? â??swing-up,â? and â??ropeâ? problems. Preliminary analysis provides some explanation for this success. The proposed controller is implemented on a physical system in our laboratory. The robot achieves behaviors including â??swing locomotionâ? and â??swing upâ? and is capable of continuous locomotion over several rungs of a ladder. We discuss a number of formal questions whose answers will be required to gain a full understanding of the strengths and weaknesses of this approach.

am

link (url) [BibTex]

2000


link (url) [BibTex]


no image
Interaction of rhythmic and discrete pattern generators in single joint movements

Sternad, D., Dean, W. J., Schaal, S.

Human Movement Science, 19(4):627-665, 2000, clmc (article)

Abstract
The study investigates a single-joint movement task that combines a translatory and cyclic component with the objective to investigate the interaction of discrete and rhythmic movement elements. Participants performed an elbow movement in the horizontal plane, oscillating at a prescribed frequency around one target and shifting to a second target upon a trigger signal, without stopping the oscillation. Analyses focused on extracting the mutual influences of the rhythmic and the discrete component of the task. Major findings are: (1) The onset of the discrete movement was confined to a limited phase window in the rhythmic cycle. (2) Its duration was influenced by the period of oscillation. (3) The rhythmic oscillation was "perturbed" by the discrete movement as indicated by phase resetting. On the basis of these results we propose a model for the coordination of discrete and rhythmic actions (K. Matsuoka, Sustained oscillations generated by mutually inhibiting neurons with adaptations, Biological Cybernetics 52 (1985) 367-376; Mechanisms of frequency and pattern control in the neural rhythm generators, Biological Cybernetics 56 (1987) 345-353). For rhythmic movements an oscillatory pattern generator is developed following models of half-center oscillations (D. Bullock, S. Grossberg, The VITE model: a neural command circuit for generating arm and articulated trajectories, in: J.A.S. Kelso, A.J. Mandel, M. F. Shlesinger (Eds.), Dynamic Patterns in Complex Systems. World Scientific. Singapore. 1988. pp. 305-326). For discrete movements a point attractor dynamics is developed close to the VITE model For each joint degree of freedom both pattern generators co-exist but exert mutual inhibition onto each other. The suggested modeling framework provides a unified account for both discrete and rhythmic movements on the basis of neuronal circuitry. Simulation results demonstrated that the effects observed in human performance can be replicated using the two pattern generators with a mutually inhibiting coupling.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Dynamics of a bouncing ball in human performance

Sternad, D., Duarte, M., Katsumata, H., Schaal, S.

Physical Review E, 63(011902):1-8, 2000, clmc (article)

Abstract
On the basis of a modified bouncing-ball model, we investigated whether human movements utilize principles of dynamic stability in their performance of a similar movement task. Stability analyses of the model provided predictions about conditions indicative of a dynamically stable period-one regime. In a series of experiments, human subjects bounced a ball rhythmically on a racket and displayed these conditions supporting that they attuned to and exploited the dynamic stability properties of the task.

am

link (url) [BibTex]

link (url) [BibTex]

1999


no image
Is imitation learning the route to humanoid robots?

Schaal, S.

Trends in Cognitive Sciences, 3(6):233-242, 1999, clmc (article)

Abstract
This review will focus on two recent developments in artificial intelligence and neural computation: learning from imitation and the development of humanoid robots. It will be postulated that the study of imitation learning offers a promising route to gain new insights into mechanisms of perceptual motor control that could ultimately lead to the creation of autonomous humanoid robots. This hope is justified because imitation learning channels research efforts towards three important issues: efficient motor learning, the connection between action and perception, and modular motor control in form of movement primitives. In order to make these points, first, a brief review of imitation learning will be given from the view of psychology and neuroscience. In these fields, representations and functional connections between action and perception have been explored that contribute to the understanding of motor acts of other beings. The recent discovery that some areas in the primate brain are active during both movement perception and execution provided a first idea of the possible neural basis of imitation. Secondly, computational approaches to imitation learning will be described, initially from the perspective of traditional AI and robotics, and then with a focus on neural network models and statistical learning research. Parallels and differences between biological and computational approaches to imitation will be highlighted. The review will end with an overview of current projects that actually employ imitation learning for humanoid robots.

am

link (url) [BibTex]

1999


link (url) [BibTex]


no image
Segmentation of endpoint trajectories does not imply segmented control

Sternad, D., Schaal, D.

Experimental Brain Research, 124(1):118-136, 1999, clmc (article)

Abstract
While it is generally assumed that complex movements consist of a sequence of simpler units, the quest to define these units of action, or movement primitives, still remains an open question. In this context, two hypotheses of movement segmentation of endpoint trajectories in 3D human drawing movements are re-examined: (1) the stroke-based segmentation hypothesis based on the results that the proportionality coefficient of the 2/3 power law changes discontinuously with each new â??strokeâ?, and (2) the segmentation hypothesis inferred from the observation of piecewise planar endpoint trajectories of 3D drawing movements. In two experiments human subjects performed a set of elliptical and figure-8 patterns of different sizes and orientations using their whole arm in 3D. The kinematic characteristics of the endpoint trajectories and the seven joint angles of the arm were analyzed. While the endpoint trajectories produced similar segmentation features as reported in the literature, analyses of the joint angles show no obvious segmentation but rather continuous oscillatory patterns. By approximating the joint angle data of human subjects with sinusoidal trajectories, and by implementing this model on a 7-degree-of-freedom anthropomorphic robot arm, it is shown that such a continuous movement strategy can produce exactly the same features as observed by the above segmentation hypotheses. The origin of this apparent segmentation of endpoint trajectories is traced back to the nonlinear transformations of the forward kinematics of human arms. The presented results demonstrate that principles of discrete movement generation may not be reconciled with those of rhythmic movement as easily as has been previously suggested, while the generalization of nonlinear pattern generators to arm movements can offer an interesting alternative to approach the question of units of action.

am

link (url) [BibTex]

link (url) [BibTex]

1993


no image
Design concurrent calculation: A CAD- and data-integrated approach

Schaal, S., Ehrlenspiel, K.

Journal of Engineering Design, 4, pages: 71-85, 1993, clmc (article)

Abstract
Besides functional regards, product design demands increasingly more for further reaching considerations. Quality alone cannot suffice anymore to compete in the market; design for manufacturability, for assembly, for recycling, etc., are well-known keywords. Those can largely be reduced to the necessity of design for costs. This paper focuses on a CAD-based approach to design concurrent calculation. It will discuss how, in the meantime well-established, tools like feature technology, knowledge-based systems, and relational databases can be blended into one coherent concept to achieve an entirely CAD- and data-integrated cost information tool. This system is able to extract data from the CAD-system, combine it with data about the company specific manufacturing environment, and subsequently autonomously evaluate manufacturability aspects and costs of the given CAD-model. Within minutes the designer gets quantitative in-formation about the major cost sources of his/her design. Additionally, some alternative methods for approximating manu-facturing times from empirical data, namely neural networks and local weighted regression, are introduced.

am

[BibTex]

1993


[BibTex]