Header logo is


2019


no image
A Robotic Framework to Facilitate Sensory Experiences for Children with Autism Spectrum Disorder: A Preliminary Study

Javed, H., Burns, R., Jeong, M., Howard, A. M., Park, C. H.

ACM Transactions on Human-Robot Interaction (THRI), 9(1), December 2019 (article)

Abstract
The diagnosis of Autism Spectrum Disorder (ASD) in children is commonly accompanied by a diagnosis of sensory processing disorders. Abnormalities are usually reported in multiple sensory processing domains, showing a higher prevalence of unusual responses, particularly to tactile, auditory, and visual stimuli. This article discusses a novel robot-based framework designed to target sensory difficulties faced by children with ASD in a controlled setting. The setup consists of a number of sensory stations, together with two different robotic agents that navigate the stations and interact with the stimuli. These stimuli are designed to resemble real-world scenarios that form a common part of one’s everyday experiences. Given the strong interest of children with ASD in technology in general and robots in particular, we attempt to utilize our robotic platform to demonstrate socially acceptable responses to the stimuli in an interactive, pedagogical setting that encourages the child’s social, motor, and vocal skills, while providing a diverse sensory experience. A preliminary user study was conducted to evaluate the efficacy of the proposed framework, with a total of 18 participants (5 with ASD and 13 typically developing) between the ages of 4 and 12 years. We derive a measure of social engagement, based on which we evaluate the effectiveness of the robots and sensory stations to identify key design features that can improve social engagement in children.

hi

DOI [BibTex]

2019


DOI [BibTex]


Implementation of a 6-{DOF} Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues
Implementation of a 6-DOF Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues

Young, E. M., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 12(3):295-306, June 2019 (article)

Abstract
Existing fingertip haptic devices can deliver different subsets of tactile cues in a compact package, but we have not yet seen a wearable six-degree-of-freedom (6-DOF) display. This paper presents the Fuppeteer (short for Fingertip Puppeteer), a device that is capable of controlling the position and orientation of a flat platform, such that any combination of normal and shear force can be delivered at any location on any human fingertip. We build on our previous work of designing a parallel continuum manipulator for fingertip haptics by presenting a motorized version in which six flexible Nitinol wires are actuated via independent roller mechanisms and proportional-derivative controllers. We evaluate the settling time and end-effector vibrations observed during system responses to step inputs. After creating a six-dimensional lookup table and adjusting simulated inputs using measured Jacobians, we show that the device can make contact with all parts of the fingertip with a mean error of 1.42 mm. Finally, we present results from a human-subject study. A total of 24 users discerned 9 evenly distributed contact locations with an average accuracy of 80.5%. Translational and rotational shear cues were identified reasonably well near the center of the fingertip and more poorly around the edges.

hi

DOI [BibTex]


no image
The Perception of Ultrasonic Square Reductions of Friction With Variable Sharpness and Duration

Gueorguiev, D., Vezzoli, E., Sednaoui, T., Grisoni, L., Lemaire-Semail, B.

IEEE Transactions on Haptics, 12(2):179-188, January 2019 (article)

Abstract
The human perception of square ultrasonic modulation of the finger-surface friction was investigated during active tactile exploration by using short frictional cues of varying duration and sharpness. In a first experiment, we asked participants to discriminate the transition time and duration of short square ultrasonic reductions of friction. They proved very sensitive to discriminate millisecond differences in these two parameters with the average psychophysical thresholds being 2.3–2.4 ms for both parameters. A second experiment focused on the perception of square friction reductions with variable transition times and durations. We found that for durations of the stimulation larger than 90 ms, participants often perceived three or four edges when only two stimulations were presented while they consistently felt two edges for signals shorter than 50 ms. A subsequent analysis of the contact forces induced by these ultrasonic stimulations during slow and fast active exploration showed that two identical consecutive ultrasonic pulses can induce significantly different frictional dynamics especially during fast motion of the finger. These results confirm the human sensitivity to transient frictional cues and suggest that the human perception of square reductions of friction can depend on their sharpness and duration as well as on the speed of exploration.

hi

DOI [BibTex]

DOI [BibTex]


no image
How Does It Feel to Clap Hands with a Robot?

Fitter, N. T., Kuchenbecker, K. J.

International Journal of Social Robotics, 2019 (article) Accepted

Abstract
Future robots may need lighthearted physical interaction capabilities to connect with people in meaningful ways. To begin exploring how users perceive playful human–robot hand-to-hand interaction, we conducted a study with 20 participants. Each user played simple hand-clapping games with the Rethink Robotics Baxter Research Robot during a 1-h-long session involving 24 randomly ordered conditions that varied in facial reactivity, physical reactivity, arm stiffness, and clapping tempo. Survey data and experiment recordings demonstrate that this interaction is viable: all users successfully completed the experiment and mentioned enjoying at least one game without prompting. Hand-clapping tempo was highly salient to users, and human-like robot errors were more widely accepted than mechanical errors. Furthermore, perceptions of Baxter varied in the following statistically significant ways: facial reactivity increased the robot’s perceived pleasantness and energeticness; physical reactivity decreased pleasantness, energeticness, and dominance; higher arm stiffness increased safety and decreased dominance; and faster tempo increased energeticness and increased dominance. These findings can motivate and guide roboticists who want to design social–physical human–robot interactions.

hi

[BibTex]

[BibTex]


Tactile Roughness Perception of Virtual Gratings by Electrovibration
Tactile Roughness Perception of Virtual Gratings by Electrovibration

Isleyen, A., Vardar, Y., Basdogan, C.

IEEE Transactions on Haptics, 2019 (article) Accepted

hi

[BibTex]

[BibTex]

2005


no image
Contact Location Display for Haptic Perception of Curvature and Object Motion

Provancher, W. R., Cutkosky, M. R., Kuchenbecker, K. J., Niemeyer, G.

International Journal of Robotics Research, 24(9):691-702, sep 2005 (article)

hi

[BibTex]

2005


[BibTex]