Header logo is


2015


no image
Distributed Event-based State Estimation

Trimpe, S.

Max Planck Institute for Intelligent Systems, November 2015 (techreport)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor-actuator-agents observe a dynamic process and sporadically exchange their measurements and inputs over a bus network. Based on these data, each agent estimates the full state of the dynamic system, which may exhibit arbitrary inter-agent couplings. Local event-based protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. This event-based scheme is shown to mimic a centralized Luenberger observer design up to guaranteed bounds, and stability is proven in the sense of bounded estimation errors for bounded disturbances. The stability result extends to the distributed control system that results when the local state estimates are used for distributed feedback control. Simulation results highlight the benefit of the event-based approach over classical periodic ones in reducing communication requirements.

am ics

arXiv [BibTex]

2015


arXiv [BibTex]


no image
Novel plasticity rule can explain the development of sensorimotor intelligence

Der, R., Martius, G.

Proceedings of the National Academy of Sciences, 112(45):E6224-E6232, 2015 (article)

Abstract
Grounding autonomous behavior in the nervous system is a fundamental challenge for neuroscience. In particular, self-organized behavioral development provides more questions than answers. Are there special functional units for curiosity, motivation, and creativity? This paper argues that these features can be grounded in synaptic plasticity itself, without requiring any higher-level constructs. We propose differential extrinsic plasticity (DEP) as a new synaptic rule for self-learning systems and apply it to a number of complex robotic systems as a test case. Without specifying any purpose or goal, seemingly purposeful and adaptive rhythmic behavior is developed, displaying a certain level of sensorimotor intelligence. These surprising results require no system-specific modifications of the DEP rule. They rather arise from the underlying mechanism of spontaneous symmetry breaking, which is due to the tight brain body environment coupling. The new synaptic rule is biologically plausible and would be an interesting target for neurobiological investigation. We also argue that this neuronal mechanism may have been a catalyst in natural evolution.

al

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Quantifying Emergent Behavior of Autonomous Robots

Martius, G., Olbrich, E.

Entropy, 17(10):7266, 2015 (article)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2012


no image
Variants of guided self-organization for robot control

Martius, G., Herrmann, J.

Theory in Biosci., 131(3):129-137, Springer Berlin / Heidelberg, 2012 (article)

al

link (url) DOI [BibTex]

2012


link (url) DOI [BibTex]


no image
The Playful Machine - Theoretical Foundation and Practical Realization of Self-Organizing Robots

Der, R., Martius, G.

Springer, Berlin Heidelberg, 2012 (book)

Abstract
Autonomous robots may become our closest companions in the near future. While the technology for physically building such machines is already available today, a problem lies in the generation of the behavior for such complex machines. Nature proposes a solution: young children and higher animals learn to master their complex brain-body systems by playing. Can this be an option for robots? How can a machine be playful? The book provides answers by developing a general principle---homeokinesis, the dynamical symbiosis between brain, body, and environment---that is shown to drive robots to self-determined, individual development in a playful and obviously embodiment-related way: a dog-like robot starts playing with a barrier, eventually jumping or climbing over it; a snakebot develops coiling and jumping modes; humanoids develop climbing behaviors when fallen into a pit, or engage in wrestling-like scenarios when encountering an opponent. The book also develops guided self-organization, a new method that helps to make the playful machines fit for fulfilling tasks in the real world.

al

link (url) [BibTex]