Header logo is


2020


A little damping goes a long way: a simulation study of how damping influences task-level stability in running
A little damping goes a long way: a simulation study of how damping influences task-level stability in running

Heim, S., Millard, M., Mouel, C. L., Badri-Spröwitz, A.

Biology Letters, 16(9), September 2020 (article)

Abstract
It is currently unclear if damping plays a functional role in legged locomotion, and simple models often do not include damping terms. We present a new model with a damping term that is isolated from other parameters: that is, the damping term can be adjusted without retuning other model parameters for nominal motion. We systematically compare how increased damping affects stability in the face of unexpected ground-height perturbations. Unlike most studies, we focus on task-level stability: instead of observing whether trajectories converge towards a nominal limit-cycle, we quantify the ability to avoid falls using a recently developed mathematical measure. This measure allows trajectories to be compared quantitatively instead of only being separated into a binary classification of ‘stable' or ‘unstable'. Our simulation study shows that increased damping contributes significantly to task-level stability; however, this benefit quickly plateaus after only a small amount of damping. These results suggest that the low intrinsic damping values observed experimentally may have stability benefits and are not simply minimized for energetic reasons. All Python code and data needed to generate our results are available open source.

dlg ics

link (url) DOI [BibTex]

2020


link (url) DOI [BibTex]


Event-triggered Learning
Event-triggered Learning

Solowjow, F., Trimpe, S.

Automatica, 117, Elsevier, July 2020 (article)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study
Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study

Neumann-Brosig, M., Marco, A., Schwarzmann, D., Trimpe, S.

IEEE Transactions on Control Systems Technology, 28(3):730-740, May 2020 (article)

Abstract
Bayesian optimization is proposed for automatic learning of optimal controller parameters from experimental data. A probabilistic description (a Gaussian process) is used to model the unknown function from controller parameters to a user-defined cost. The probabilistic model is updated with data, which is obtained by testing a set of parameters on the physical system and evaluating the cost. In order to learn fast, the Bayesian optimization algorithm selects the next parameters to evaluate in a systematic way, for example, by maximizing information gain about the optimum. The algorithm thus iteratively finds the globally optimal parameters with only few experiments. Taking throttle valve control as a representative industrial control example, the proposed auto-tuning method is shown to outperform manual calibration: it consistently achieves better performance with a low number of experiments. The proposed auto-tuning framework is flexible and can handle different control structures and objectives.

ics

arXiv (PDF) DOI Project Page [BibTex]

arXiv (PDF) DOI Project Page [BibTex]


no image
Sliding Mode Control with Gaussian Process Regression for Underwater Robots

Lima, G. S., Trimpe, S., Bessa, W. M.

Journal of Intelligent & Robotic Systems, January 2020 (article)

ics

DOI [BibTex]

DOI [BibTex]


Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks
Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks

Beuchert, J., Solowjow, F., Raisch, J., Trimpe, S., Seel, T.

IEEE Control Systems Letters, 4(1):103-108, January 2020 (article)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems
Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems

Baumann, D., Mager, F., Zimmerling, M., Trimpe, S.

IEEE Control Systems Letters, 4(1):127-132, January 2020 (article)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


Self-supervised motion deblurring
Self-supervised motion deblurring

Liu, P., Janai, J., Pollefeys, M., Sattler, T., Geiger, A.

IEEE Robotics and Automation Letters, 2020 (article)

Abstract
Motion blurry images challenge many computer vision algorithms, e.g., feature detection, motion estimation, or object recognition. Deep convolutional neural networks are state-of-the-art for image deblurring. However, obtaining training data with corresponding sharp and blurry image pairs can be difficult. In this paper, we present a differentiable reblur model for self-supervised motion deblurring, which enables the network to learn from real-world blurry image sequences without relying on sharp images for supervision. Our key insight is that motion cues obtained from consecutive images yield sufficient information to inform the deblurring task. We therefore formulate deblurring as an inverse rendering problem, taking into account the physical image formation process: we first predict two deblurred images from which we estimate the corresponding optical flow. Using these predictions, we re-render the blurred images and minimize the difference with respect to the original blurry inputs. We use both synthetic and real dataset for experimental evaluations. Our experiments demonstrate that self-supervised single image deblurring is really feasible and leads to visually compelling results.

avg

pdf Project Page Blog [BibTex]

pdf Project Page Blog [BibTex]


no image
Semi-Supervised Learning of Multi-Object 3D Scene Representations

Elich, C., Oswald, M. R., Pollefeys, M., Stueckler, J.

CoRR, abs/2010.04030, 2020 (article)

Abstract
Representing scenes at the granularity of objects is a prerequisite for scene understanding and decision making. We propose a novel approach for learning multi-object 3D scene representations from images. A recurrent encoder regresses a latent representation of 3D shapes, poses and texture of each object from an input RGB image. The 3D shapes are represented continuously in function-space as signed distance functions (SDF) which we efficiently pre-train from example shapes in a supervised way. By differentiable rendering we then train our model to decompose scenes self-supervised from RGB-D images. Our approach learns to decompose images into the constituent objects of the scene and to infer their shape, pose and texture from a single view. We evaluate the accuracy of our model in inferring the 3D scene layout and demonstrate its generative capabilities.

ev

link (url) [BibTex]

link (url) [BibTex]


no image
TUM Flyers: Vision-Based MAV Navigation for Systematic Inspection of Structures

Usenko, V., Stumberg, L. V., Stückler, J., Cremers, D.

In Bringing Innovative Robotic Technologies from Research Labs to Industrial End-users: The Experience of the European Robotics Challenges, 136, pages: 189-209, Springer International Publishing, 2020 (inbook)

ev

[BibTex]

[BibTex]


Learning Neural Light Transport
Learning Neural Light Transport

Sanzenbacher, P., Mescheder, L., Geiger, A.

Arxiv, 2020 (article)

Abstract
In recent years, deep generative models have gained significance due to their ability to synthesize natural-looking images with applications ranging from virtual reality to data augmentation for training computer vision models. While existing models are able to faithfully learn the image distribution of the training set, they often lack controllability as they operate in 2D pixel space and do not model the physical image formation process. In this work, we investigate the importance of 3D reasoning for photorealistic rendering. We present an approach for learning light transport in static and dynamic 3D scenes using a neural network with the goal of predicting photorealistic images. In contrast to existing approaches that operate in the 2D image domain, our approach reasons in both 3D and 2D space, thus enabling global illumination effects and manipulation of 3D scene geometry. Experimentally, we find that our model is able to produce photorealistic renderings of static and dynamic scenes. Moreover, it compares favorably to baselines which combine path tracing and image denoising at the same computational budget.

avg

arxiv [BibTex]


HOTA: A Higher Order Metric for Evaluating Multi-Object Tracking
HOTA: A Higher Order Metric for Evaluating Multi-Object Tracking

Luiten, J., Osep, A., Dendorfer, P., Torr, P., Geiger, A., Leal-Taixe, L., Leibe, B.

International Journal of Computer Vision (IJCV), 2020 (article)

Abstract
Multi-Object Tracking (MOT) has been notoriously difficult to evaluate. Previous metrics overemphasize the importance of either detection or association. To address this, we present a novel MOT evaluation metric, HOTA (Higher Order Tracking Accuracy), which explicitly balances the effect of performing accurate detection, association and localization into a single unified metric for comparing trackers. HOTA decomposes into a family of sub-metrics which are able to evaluate each of five basic error types separately, which enables clear analysis of tracking performance. We evaluate the effectiveness of HOTA on the MOTChallenge benchmark, and show that it is able to capture important aspects of MOT performance not previously taken into account by established metrics. Furthermore, we show HOTA scores better align with human visual evaluation of tracking performance.

avg

pdf [BibTex]

pdf [BibTex]


Wireless Control for Smart Manufacturing: Recent Approaches and Open Challenges
Wireless Control for Smart Manufacturing: Recent Approaches and Open Challenges

Baumann, D., Mager, F., Wetzker, U., Thiele, L., Zimmerling, M., Trimpe, S.

Proceedings of the IEEE, 2020 (article) Accepted

ics

arXiv DOI [BibTex]

arXiv DOI [BibTex]


no image
Visual-Inertial Mapping with Non-Linear Factor Recovery

Usenko, V., Demmel, N., Schubert, D., Stückler, J., Cremers, D.

IEEE Robotics and Automation Letters (RA-L), 5, 2020, accepted for presentation at IEEE International Conference on Robotics and Automation (ICRA) 2020, to appear, arXiv:1904.06504 (article)

Abstract
Cameras and inertial measurement units are complementary sensors for ego-motion estimation and environment mapping. Their combination makes visual-inertial odometry (VIO) systems more accurate and robust. For globally consistent mapping, however, combining visual and inertial information is not straightforward. To estimate the motion and geometry with a set of images large baselines are required. Because of that, most systems operate on keyframes that have large time intervals between each other. Inertial data on the other hand quickly degrades with the duration of the intervals and after several seconds of integration, it typically contains only little useful information. In this paper, we propose to extract relevant information for visual-inertial mapping from visual-inertial odometry using non-linear factor recovery. We reconstruct a set of non-linear factors that make an optimal approximation of the information on the trajectory accumulated by VIO. To obtain a globally consistent map we combine these factors with loop-closing constraints using bundle adjustment. The VIO factors make the roll and pitch angles of the global map observable, and improve the robustness and the accuracy of the mapping. In experiments on a public benchmark, we demonstrate superior performance of our method over the state-of-the-art approaches.

ev

[BibTex]

[BibTex]


Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage
Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage

Haksar, R. N., Trimpe, S., Schwager, M.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

ics

DOI [BibTex]

DOI [BibTex]


Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control
Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control

Nubert, J., Koehler, J., Berenz, V., Allgower, F., Trimpe, S.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

Abstract
Fast feedback control and safety guarantees are essential in modern robotics. We present an approach that achieves both by combining novel robust model predictive control (MPC) with function approximation via (deep) neural networks (NNs). The result is a new approach for complex tasks with nonlinear, uncertain, and constrained dynamics as are common in robotics. Specifically, we leverage recent results in MPC research to propose a new robust setpoint tracking MPC algorithm, which achieves reliable and safe tracking of a dynamic setpoint while guaranteeing stability and constraint satisfaction. The presented robust MPC scheme constitutes a one-layer approach that unifies the often separated planning and control layers, by directly computing the control command based on a reference and possibly obstacle positions. As a separate contribution, we show how the computation time of the MPC can be drastically reduced by approximating the MPC law with a NN controller. The NN is trained and validated from offline samples of the MPC, yielding statistical guarantees, and used in lieu thereof at run time. Our experiments on a state-of-the-art robot manipulator are the first to show that both the proposed robust and approximate MPC schemes scale to real-world robotic systems.

am ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art

Janai, J., Güney, F., Behl, A., Geiger, A.

Arxiv, Foundations and Trends in Computer Graphics and Vision, 2020 (book)

Abstract
Recent years have witnessed enormous progress in AI-related fields such as computer vision, machine learning, and autonomous vehicles. As with any rapidly growing field, it becomes increasingly difficult to stay up-to-date or enter the field as a beginner. While several survey papers on particular sub-problems have appeared, no comprehensive survey on problems, datasets, and methods in computer vision for autonomous vehicles has been published. This monograph attempts to narrow this gap by providing a survey on the state-of-the-art datasets and techniques. Our survey includes both the historically most relevant literature as well as the current state of the art on several specific topics, including recognition, reconstruction, motion estimation, tracking, scene understanding, and end-to-end learning for autonomous driving. Towards this goal, we analyze the performance of the state of the art on several challenging benchmarking datasets, including KITTI, MOT, and Cityscapes. Besides, we discuss open problems and current research challenges. To ease accessibility and accommodate missing references, we also provide a website that allows navigating topics as well as methods and provides additional information.

avg

pdf Project Page link Project Page [BibTex]


Event-triggered Learning for Linear Quadratic Control
Event-triggered Learning for Linear Quadratic Control

Schlüter, H., Solowjow, F., Trimpe, S.

IEEE Transactions on Automatic Control, 2020 (article) Accepted

ics

arXiv [BibTex]

arXiv [BibTex]