Header logo is


2020


Event-triggered Learning
Event-triggered Learning

Solowjow, F., Trimpe, S.

Automatica, 117, Elsevier, July 2020 (article)

ics

arXiv PDF DOI Project Page [BibTex]

2020


arXiv PDF DOI Project Page [BibTex]


Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles
Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles

Singh, D., Domínguez, A., Choudhury, U., Kottapalli, S., Popescu, M., Dietrich, S., Fischer, P.

Nature Communications, 11(2210), May 2020 (article)

Abstract
Symmetry breaking and the emergence of self-organized patterns is the hallmark of com- plexity. Here, we demonstrate that a sessile drop, containing titania powder particles with negligible self-propulsion, exhibits a transition to collective motion leading to self-organized flow patterns. This phenomenology emerges through a novel mechanism involving the interplay between the chemical activity of the photocatalytic particles, which induces Mar- angoni stresses at the liquid–liquid interface, and the geometrical confinement provided by the drop. The response of the interface to the chemical activity of the particles is the source of a significantly amplified hydrodynamic flow within the drop, which moves the particles. Furthermore, in ensembles of such active drops long-ranged ordering of the flow patterns within the drops is observed. We show that the ordering is dictated by a chemical com- munication between drops, i.e., an alignment of the flow patterns is induced by the gradients of the chemicals emanating from the active particles, rather than by hydrodynamic interactions.

pf icm

link (url) DOI [BibTex]


Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study
Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study

Neumann-Brosig, M., Marco, A., Schwarzmann, D., Trimpe, S.

IEEE Transactions on Control Systems Technology, 28(3):730-740, May 2020 (article)

Abstract
Bayesian optimization is proposed for automatic learning of optimal controller parameters from experimental data. A probabilistic description (a Gaussian process) is used to model the unknown function from controller parameters to a user-defined cost. The probabilistic model is updated with data, which is obtained by testing a set of parameters on the physical system and evaluating the cost. In order to learn fast, the Bayesian optimization algorithm selects the next parameters to evaluate in a systematic way, for example, by maximizing information gain about the optimum. The algorithm thus iteratively finds the globally optimal parameters with only few experiments. Taking throttle valve control as a representative industrial control example, the proposed auto-tuning method is shown to outperform manual calibration: it consistently achieves better performance with a low number of experiments. The proposed auto-tuning framework is flexible and can handle different control structures and objectives.

ics

arXiv (PDF) DOI Project Page [BibTex]

arXiv (PDF) DOI Project Page [BibTex]


Spectrally selective and highly-sensitive UV photodetection with UV-A, C band specific polarity switching in silver plasmonic nanoparticle enhanced gallium oxide thin-film
Spectrally selective and highly-sensitive UV photodetection with UV-A, C band specific polarity switching in silver plasmonic nanoparticle enhanced gallium oxide thin-film

Arora, K., Singh, D., Fischer, P., Kumar, M.

Adv. Opt. Mat., March 2020 (article)

Abstract
Traditional photodetectors generally show a unipolar photocurrent response when illuminated with light of wavelength equal or shorter than the optical bandgap. Here, we report that a thin film of gallium oxide (GO) decorated with plasmonic nanoparticles, surprisingly, exhibits a change in the polarity of the photocurrent for different UV bands. Silver (Ag) nanoparticles are vacuum-deposited onto β-Ga2O3 and the AgNP@GO thin films show a record responsivity of 250 A/W, which significantly outperforms bare GO planar photodetectors. The photoresponsivity reverses sign from +157 µA/W in the UV-C band under unbiased operation to -353 µA/W in the UV-A band. The current reversal is rationalized by considering the charge dynamics stemming from hot electrons generated when the incident light excites a local surface plasmon resonance (LSPR) in the Ag nanoparticles. The Ag nanoparticles improve the external quantum efficiency and detectivity by nearly one order of magnitude with high values of 1.2×105 and 3.4×1014 Jones, respectively. This plasmon-enhanced solar blind GO detector allows UV regions to be spectrally distinguished, which is useful for the development of sensitive dynamic imaging photodetectors.

pf

[BibTex]


no image
Adaptation and Robust Learning of Probabilistic Movement Primitives

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

IEEE Transactions on Robotics, 36(2):366-379, IEEE, March 2020 (article)

ei

arXiv DOI Project Page [BibTex]

arXiv DOI Project Page [BibTex]


Investigating photoresponsivity of graphene-silver hybrid nanomaterials in the ultraviolet
Investigating photoresponsivity of graphene-silver hybrid nanomaterials in the ultraviolet

Deshpande, P., Suri, P., Jeong, H., Fischer, P., Ghosh, A., Ghosh, G.

J. Chem. Phys., 152, pages: 044709, January 2020 (article)

Abstract
There have been several reports of plasmonically enhanced graphene photodetectors in the visible and the near infrared regime but rarely in the ultraviolet. In a previous work, we have reported that a graphene-silver hybrid structure shows a high photoresponsivity of 13 A/W at 270 nm. Here, we consider the likely mechanisms that underlie this strong photoresponse. We investigate the role of the plasmonic layer and examine the response using silver and gold nanoparticles of similar dimensions and spatial arrangement. The effect on local doping, strain, and absorption properties of the hybrid is also probed by photocurrent measurements and Raman and UV-visible spectroscopy. We find that the local doping from the silver nanoparticles is stronger than that from gold and correlates with a measured photosensitivity that is larger in devices with a higher contact area between the plasmonic nanomaterials and the graphene layer.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


A High-Fidelity Phantom for the Simulation and Quantitative Evaluation of Transurethral Resection of the Prostate
A High-Fidelity Phantom for the Simulation and Quantitative Evaluation of Transurethral Resection of the Prostate

Choi, E., Adams, F., Gengenbacher, A., Schlager, D., Palagi, S., Müller, P., Wetterauer, U., Miernik, A., Fischer, P., Qiu, T.

Annals of Biomed. Eng., 48, pages: 437-446, January 2020 (article)

Abstract
Transurethral resection of the prostate (TURP) is a minimally invasive endoscopic procedure that requires experience and skill of the surgeon. To permit surgical training under realistic conditions we report a novel phantom of the human prostate that can be resected with TURP. The phantom mirrors the anatomy and haptic properties of the gland and permits quantitative evaluation of important surgical performance indicators. Mixtures of soft materials are engineered to mimic the physical properties of the human tissue, including the mechanical strength, the electrical and thermal conductivity, and the appearance under an endoscope. Electrocautery resection of the phantom closely resembles the procedure on human tissue. Ultrasound contrast agent was applied to the central zone, which was not detectable by the surgeon during the surgery but showed high contrast when imaged after the surgery, to serve as a label for the quantitative evaluation of the surgery. Quantitative criteria for performance assessment are established and evaluated by automated image analysis. We present the workflow of a surgical simulation on a prostate phantom followed by quantitative evaluation of the surgical performance. Surgery on the phantom is useful for medical training, and enables the development and testing of endoscopic and minimally invasive surgical instruments.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Sliding Mode Control with Gaussian Process Regression for Underwater Robots

Lima, G. S., Trimpe, S., Bessa, W. M.

Journal of Intelligent & Robotic Systems, January 2020 (article)

ics

DOI [BibTex]

DOI [BibTex]


Interactive Materials – Drivers of Future Robotic Systems
Interactive Materials – Drivers of Future Robotic Systems

Fischer, P.

Adv. Mat., January 2020 (article)

Abstract
A robot senses its environment, processes the sensory information, acts in response to these inputs, and possibly communicates with the outside world. Robots generally achieve these tasks with electronics-based hardware or by receiving inputs from some external hardware. In contrast, simple microorganisms can autonomously perceive, act, and communicate via purely physicochemical processes in soft material systems. A key property of biological systems is that they are built from energy-consuming ‘active’ units. Exciting developments in material science show that even very simple artificial active building blocks can show surprisingly rich emergent behaviors. Active non-equilibrium systems are therefore predicted to play an essential role to realize interactive materials. A major challenge is to find robust ways to couple and integrate the energy-consuming building blocks to the mechanical structure of the material. However, success in this endeavor will lead to a new generation of sophisticated micro- and soft-robotic systems that can operate autonomously.

pf

link (url) DOI [BibTex]


Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks
Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks

Beuchert, J., Solowjow, F., Raisch, J., Trimpe, S., Seel, T.

IEEE Control Systems Letters, 4(1):103-108, January 2020 (article)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

ei ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems
Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems

Baumann, D., Mager, F., Zimmerling, M., Trimpe, S.

IEEE Control Systems Letters, 4(1):127-132, January 2020 (article)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


no image
Analytical classical density functionals from an equation learning network

Lin, S., Martius, G., Oettel, M.

The Journal of Chemical Physics, 152(2):021102, 2020, arXiv preprint \url{https://arxiv.org/abs/1910.12752} (article)

al

Preprint_PDF DOI [BibTex]

Preprint_PDF DOI [BibTex]


no image
An Adaptive Optimizer for Measurement-Frugal Variational Algorithms

Kübler, J. M., Arrasmith, A., Cincio, L., Coles, P. J.

Quantum, 4, pages: 263, 2020 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Counterfactual Mean Embedding

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukatat, S.

Journal of Machine Learning Research, 2020 (article) Accepted

ei

[BibTex]

[BibTex]


Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage
Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage

Haksar, R. N., Trimpe, S., Schwager, M.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

ics

DOI [BibTex]

DOI [BibTex]


Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control
Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control

Nubert, J., Koehler, J., Berenz, V., Allgower, F., Trimpe, S.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

Abstract
Fast feedback control and safety guarantees are essential in modern robotics. We present an approach that achieves both by combining novel robust model predictive control (MPC) with function approximation via (deep) neural networks (NNs). The result is a new approach for complex tasks with nonlinear, uncertain, and constrained dynamics as are common in robotics. Specifically, we leverage recent results in MPC research to propose a new robust setpoint tracking MPC algorithm, which achieves reliable and safe tracking of a dynamic setpoint while guaranteeing stability and constraint satisfaction. The presented robust MPC scheme constitutes a one-layer approach that unifies the often separated planning and control layers, by directly computing the control command based on a reference and possibly obstacle positions. As a separate contribution, we show how the computation time of the MPC can be drastically reduced by approximating the MPC law with a NN controller. The NN is trained and validated from offline samples of the MPC, yielding statistical guarantees, and used in lieu thereof at run time. Our experiments on a state-of-the-art robot manipulator are the first to show that both the proposed robust and approximate MPC schemes scale to real-world robotic systems.

am ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


A machine learning route between band mapping and band structure
A machine learning route between band mapping and band structure

Xian*, R. P., Stimper*, V., Zacharias, M., Dong, S., Dendzik, M., Beaulieu, S., Schölkopf, B., Wolf, M., Rettig, L., Carbogno, C., Bauer, S., Ernstorfer, R.

2020, *equal contribution (misc)

ei

arXiv [BibTex]

arXiv [BibTex]

2002


no image
Optimized Support Vector Machines for Nonstationary Signal Classification

Davy, M., Gretton, A., Doucet, A., Rayner, P.

IEEE Signal Processing Letters, 9(12):442-445, December 2002 (article)

Abstract
This letter describes an efficient method to perform nonstationary signal classification. A support vector machine (SVM) algorithm is introduced and its parameters optimised in a principled way. Simulations demonstrate that our low complexity method outperforms state-of-the-art nonstationary signal classification techniques.

ei

PostScript Web DOI [BibTex]

2002


PostScript Web DOI [BibTex]


no image
A New Discriminative Kernel from Probabilistic Models

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.

Neural Computation, 14(10):2397-2414, October 2002 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Functional Genomics of Osteoarthritis

Aigner, T., Bartnik, E., Zien, A., Zimmer, R.

Pharmacogenomics, 3(5):635-650, September 2002 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Constructing Boosting algorithms from SVMs: an application to one-class classification.

Rätsch, G., Mika, S., Schölkopf, B., Müller, K.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9):1184-1199, September 2002 (article)

Abstract
We show via an equivalence of mathematical programs that a support vector (SV) algorithm can be translated into an equivalent boosting-like algorithm and vice versa. We exemplify this translation procedure for a new algorithm—one-class leveraging—starting from the one-class support vector machine (1-SVM). This is a first step toward unsupervised learning in a boosting framework. Building on so-called barrier methods known from the theory of constrained optimization, it returns a function, written as a convex combination of base hypotheses, that characterizes whether a given test point is likely to have been generated from the distribution underlying the training data. Simulations on one-class classification problems demonstrate the usefulness of our approach.

ei

DOI [BibTex]

DOI [BibTex]


no image
Co-Clustering of Biological Networks and Gene Expression Data

Hanisch, D., Zien, A., Zimmer, R., Lengauer, T.

Bioinformatics, (Suppl 1):145S-154S, 18, July 2002 (article)

Abstract
Motivation: Large scale gene expression data are often analysed by clustering genes based on gene expression data alone, though a priori knowledge in the form of biological networks is available. The use of this additional information promises to improve exploratory analysis considerably. Results: We propose constructing a distance function which combines information from expression data and biological networks. Based on this function, we compute a joint clustering of genes and vertices of the network. This general approach is elaborated for metabolic networks. We define a graph distance function on such networks and combine it with a correlation-based distance function for gene expression measurements. A hierarchical clustering and an associated statistical measure is computed to arrive at a reasonable number of clusters. Our method is validated using expression data of the yeast diauxic shift. The resulting clusters are easily interpretable in terms of the biochemical network and the gene expression data and suggest that our method is able to automatically identify processes that are relevant under the measured conditions.

ei

Web [BibTex]

Web [BibTex]


no image
Confidence measures for protein fold recognition

Sommer, I., Zien, A., von Ohsen, N., Zimmer, R., Lengauer, T.

Bioinformatics, 18(6):802-812, June 2002 (article)

ei

[BibTex]

[BibTex]


no image
The contributions of color to recognition memory for natural scenes

Wichmann, F., Sharpe, L., Gegenfurtner, K.

Journal of Experimental Psychology: Learning, Memory and Cognition, 28(3):509-520, May 2002 (article)

Abstract
The authors used a recognition memory paradigm to assess the influence of color information on visual memory for images of natural scenes. Subjects performed 5-10% better for colored than for black-and-white images independent of exposure duration. Experiment 2 indicated little influence of contrast once the images were suprathreshold, and Experiment 3 revealed that performance worsened when images were presented in color and tested in black and white, or vice versa, leading to the conclusion that the surface property color is part of the memory representation. Experiments 4 and 5 exclude the possibility that the superior recognition memory for colored images results solely from attentional factors or saliency. Finally, the recognition memory advantage disappears for falsely colored images of natural scenes: The improvement in recognition memory depends on the color congruence of presented images with learned knowledge about the color gamut found within natural scenes. The results can be accounted for within a multiple memory systems framework.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Training invariant support vector machines

DeCoste, D., Schölkopf, B.

Machine Learning, 46(1-3):161-190, January 2002 (article)

Abstract
Practical experience has shown that in order to obtain the best possible performance, prior knowledge about invariances of a classification problem at hand ought to be incorporated into the training procedure. We describe and review all known methods for doing so in support vector machines, provide experimental results, and discuss their respective merits. One of the significant new results reported in this work is our recent achievement of the lowest reported test error on the well-known MNIST digit recognition benchmark task, with SVM training times that are also significantly faster than previous SVM methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Contrast discrimination with sinusoidal gratings of different spatial frequency

Bird, C., Henning, G., Wichmann, F.

Journal of the Optical Society of America A, 19(7), pages: 1267-1273, 2002 (article)

Abstract
The detectability of contrast increments was measured as a function of the contrast of a masking or “pedestal” grating at a number of different spatial frequencies ranging from 2 to 16 cycles per degree of visual angle. The pedestal grating always had the same orientation, spatial frequency and phase as the signal. The shape of the contrast increment threshold versus pedestal contrast (TvC) functions depend of the performance level used to define the “threshold,” but when both axes are normalized by the contrast corresponding to 75% correct detection at each frequency, the (TvC) functions at a given performance level are identical. Confidence intervals on the slope of the rising part of the TvC functions are so wide that it is not possible with our data to reject Weber’s Law.

ei

PDF [BibTex]

PDF [BibTex]


no image
Model Selection for Small Sample Regression

Chapelle, O., Vapnik, V., Bengio, Y.

Machine Learning, 48(1-3):9-23, 2002 (article)

Abstract
Model selection is an important ingredient of many machine learning algorithms, in particular when the sample size in small, in order to strike the right trade-off between overfitting and underfitting. Previous classical results for linear regression are based on an asymptotic analysis. We present a new penalization method for performing model selection for regression that is appropriate even for small samples. Our penalization is based on an accurate estimator of the ratio of the expected training error and the expected generalization error, in terms of the expected eigenvalues of the input covariance matrix.

ei

PostScript [BibTex]

PostScript [BibTex]


no image
Support Vector Machines and Kernel Methods: The New Generation of Learning Machines

Cristianini, N., Schölkopf, B.

AI Magazine, 23(3):31-41, 2002 (article)

ei

[BibTex]


no image
A Bennett Concentration Inequality and Its Application to Suprema of Empirical Processes

Bousquet, O.

C. R. Acad. Sci. Paris, Ser. I, 334, pages: 495-500, 2002 (article)

Abstract
We introduce new concentration inequalities for functions on product spaces. They allow to obtain a Bennett type deviation bound for suprema of empirical processes indexed by upper bounded functions. The result is an improvement on Rio's version \cite{Rio01b} of Talagrand's inequality \cite{Talagrand96} for equidistributed variables.

ei

PDF PostScript [BibTex]


no image
Numerical evolution of axisymmetric, isolated systems in general relativity

Frauendiener, J., Hein, M.

Physical Review D, 66, pages: 124004-124004, 2002 (article)

Abstract
We describe in this article a new code for evolving axisymmetric isolated systems in general relativity. Such systems are described by asymptotically flat space-times, which have the property that they admit a conformal extension. We are working directly in the extended conformal manifold and solve numerically Friedrich's conformal field equations, which state that Einstein's equations hold in the physical space-time. Because of the compactness of the conformal space-time the entire space-time can be calculated on a finite numerical grid. We describe in detail the numerical scheme, especially the treatment of the axisymmetry and the boundary.

ei

GZIP [BibTex]

GZIP [BibTex]


no image
Marginalized kernels for biological sequences

Tsuda, K., Kin, T., Asai, K.

Bioinformatics, 18(Suppl 1):268-275, 2002 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Stability and Generalization

Bousquet, O., Elisseeff, A.

Journal of Machine Learning Research, 2, pages: 499-526, 2002 (article)

Abstract
We define notions of stability for learning algorithms and show how to use these notions to derive generalization error bounds based on the empirical error and the leave-one-out error. The methods we use can be applied in the regression framework as well as in the classification one when the classifier is obtained by thresholding a real-valued function. We study the stability properties of large classes of learning algorithms such as regularization based algorithms. In particular we focus on Hilbert space regularization and Kullback-Leibler regularization. We demonstrate how to apply the results to SVM for regression and classification.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Subspace information criterion for non-quadratic regularizers – model selection for sparse regressors

Tsuda, K., Sugiyama, M., Müller, K.

IEEE Trans Neural Networks, 13(1):70-80, 2002 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Modeling splicing sites with pairwise correlations

Arita, M., Tsuda, K., Asai, K.

Bioinformatics, 18(Suppl 2):27-34, 2002 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Contrast discrimination with pulse-trains in pink noise

Henning, G., Bird, C., Wichmann, F.

Journal of the Optical Society of America A, 19(7), pages: 1259-1266, 2002 (article)

Abstract
Detection performance was measured with sinusoidal and pulse-train gratings. Although the 2.09-c/deg pulse-train, or line gratings, contained at least 8 harmonics all at equal contrast, they were no more detectable than their most detectable component. The addition of broadband pink noise designed to equalize the detectability of the components of the pulse train made the pulse train about a factor of four more detectable than any of its components. However, in contrast-discrimination experiments, with a pedestal or masking grating of the same form and phase as the signal and 15% contrast, the noise did not affect the discrimination performance of the pulse train relative to that obtained with its sinusoidal components. We discuss the implications of these observations for models of early vision in particular the implications for possible sources of internal noise.

ei

PDF [BibTex]

PDF [BibTex]


no image
Perfusion Quantification using Gaussian Process Deconvolution

Andersen, IK., Szymkowiak, A., Rasmussen, CE., Hanson, LG., Marstrand, JR., Larsson, HBW., Hansen, LK.

Magnetic Resonance in Medicine, (48):351-361, 2002 (article)

Abstract
The quantification of perfusion using dynamic susceptibility contrast MR imaging requires deconvolution to obtain the residual impulse-response function (IRF). Here, a method using a Gaussian process for deconvolution, GPD, is proposed. The fact that the IRF is smooth is incorporated as a constraint in the method. The GPD method, which automatically estimates the noise level in each voxel, has the advantage that model parameters are optimized automatically. The GPD is compared to singular value decomposition (SVD) using a common threshold for the singular values and to SVD using a threshold optimized according to the noise level in each voxel. The comparison is carried out using artificial data as well as using data from healthy volunteers. It is shown that GPD is comparable to SVD variable optimized threshold when determining the maximum of the IRF, which is directly related to the perfusion. GPD provides a better estimate of the entire IRF. As the signal to noise ratio increases or the time resolution of the measurements increases, GPD is shown to be superior to SVD. This is also found for large distribution volumes.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Tracking a Small Set of Experts by Mixing Past Posteriors

Bousquet, O., Warmuth, M.

Journal of Machine Learning Research, 3, pages: 363-396, (Editors: Long, P.), 2002 (article)

Abstract
In this paper, we examine on-line learning problems in which the target concept is allowed to change over time. In each trial a master algorithm receives predictions from a large set of n experts. Its goal is to predict almost as well as the best sequence of such experts chosen off-line by partitioning the training sequence into k+1 sections and then choosing the best expert for each section. We build on methods developed by Herbster and Warmuth and consider an open problem posed by Freund where the experts in the best partition are from a small pool of size m. Since k >> m, the best expert shifts back and forth between the experts of the small pool. We propose algorithms that solve this open problem by mixing the past posteriors maintained by the master algorithm. We relate the number of bits needed for encoding the best partition to the loss bounds of the algorithms. Instead of paying log n for choosing the best expert in each section we first pay log (n choose m) bits in the bounds for identifying the pool of m experts and then log m bits per new section. In the bounds we also pay twice for encoding the boundaries of the sections.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
A femoral arteriovenous shunt facilitates arterial whole blood sampling in animals

Weber, B., Burger, C., Biro, P., Buck, A.

Eur J Nucl Med Mol Imaging, 29, pages: 319-323, 2002 (article)

ei

[BibTex]

[BibTex]


no image
Choosing Multiple Parameters for Support Vector Machines

Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.

Machine Learning, 46(1):131-159, 2002 (article)

Abstract
The problem of automatically tuning multiple parameters for pattern recognition Support Vector Machines (SVM) is considered. This is done by minimizing some estimates of the generalization error of SVMs using a gradient descent algorithm over the set of parameters. Usual methods for choosing parameters, based on exhaustive search become intractable as soon as the number of parameters exceeds two. Some experimental results assess the feasibility of our approach for a large number of parameters (more than 100) and demonstrate an improvement of generalization performance.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


Chirality-specific nonlinear spectroscopies in isotropic media
Chirality-specific nonlinear spectroscopies in isotropic media

Fischer, P., Albrecht, A.

BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 75(5):1119-1124, 2002, 10th International Conference on Time-Resolved Vibrational Spectroscopy (TRVS 2001), OKAZZAKI, JAPAN, MAY 21-25, 2001 (article)

Abstract
Sum or difference frequency generation (SFG or DFG) in isotropic media is in the electric-dipole approximation only symmetry allowed for optically active systems. The hyperpolarizability giving rise to these three-wave mixing processes features only one isotropic component. It factorizes into two terms, an energy (denominator) factor and a triple product of transition moments. These forbid degenerate SFG, i.e., second harmonic generation, as well as the existence of the linear electrooptic effect (Pockels effect) in isotropic media. This second order response also has no static limit, which leads to particularly strong resonance phenomena that are qualitatively different from those usually seen in the ubiquitous even-wave mixing spectroscopies. In particular, the participation of two (not the usual one) excited states is essential to achieve dramatic resonance enhancement, We report our first efforts to see such resonantly enhanced chirality specific SFG.

pf

DOI [BibTex]

DOI [BibTex]


The chiral specificity of sum-frequency generation in solutions
The chiral specificity of sum-frequency generation in solutions

Fischer, P., Beckwitt, K., Wise, F., Albrecht, A.

CHEMICAL PHYSICS LETTERS, 352(5-6):463-468, 2002 (article)

Abstract
Sum-frequency generation in isotropic media is in the electric-dipole approximation the only symmetry allowed for chiral systems. We demonstrate that the sum-frequency intensity from an optically active liquid depends quadratically on the difference in concentration of the two enantiomers. The dominant contribution to the signal is found to be due to the chirality specific electric-dipolar three-wave mixing nonlinearity. Selecting the polarization of all fields allows the chiral electric-dipolar contributions to the bulk sum-frequency signal to be discerned from any achiral magnetic-dipolar and electric-quadrupolar contributions. (C) 2002 Published by Elsevier Science B.V.

pf

DOI [BibTex]

DOI [BibTex]