Header logo is


2014


no image
Wenn es was zu sagen gibt

(Klaus Tschira Award 2014 in Computer Science)

Trimpe, S.

Bild der Wissenschaft, pages: 20-23, November 2014, (popular science article in German) (article)

am ics

PDF Project Page [BibTex]

2014


PDF Project Page [BibTex]


Thumb xl pami
3D Traffic Scene Understanding from Movable Platforms

Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(5):1012-1025, published, IEEE, Los Alamitos, CA, May 2014 (article)

Abstract
In this paper, we present a novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene. In particular, the scene topology, geometry and traffic activities are inferred from short video sequences. Inspired by the impressive driving capabilities of humans, our model does not rely on GPS, lidar or map knowledge. Instead, it takes advantage of a diverse set of visual cues in the form of vehicle tracklets, vanishing points, semantic scene labels, scene flow and occupancy grids. For each of these cues we propose likelihood functions that are integrated into a probabilistic generative model. We learn all model parameters from training data using contrastive divergence. Experiments conducted on videos of 113 representative intersections show that our approach successfully infers the correct layout in a variety of very challenging scenarios. To evaluate the importance of each feature cue, experiments using different feature combinations are conducted. Furthermore, we show how by employing context derived from the proposed method we are able to improve over the state-of-the-art in terms of object detection and object orientation estimation in challenging and cluttered urban environments.

avg ps

pdf link (url) [BibTex]

pdf link (url) [BibTex]


no image
Juggling revisited — A voxel based morphometry study with expert jugglers

Gerber, P., Schlaffke, L., Heba, S., Greenlee, M., Schultz, T., Schmidt-Wilcke, T.

NeuroImage, 95, pages: 320-325, 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Assessing attention and cognitive function in completely locked-in state with event-related brain potentials and epidural electrocorticography

Bensch, M., Martens, S., Halder, S., Hill, J., Nijboer, F., Ramos, A., Birbaumer, N., Bodgan, M., Kotchoubey, B., Rosenstiel, W., Schölkopf, B., Gharabaghi, A.

Journal of Neural Engineering, 11(2):026006, 2014 (article)

Abstract
Objective. Patients in the completely locked-in state (CLIS), due to, for example, amyotrophic lateral sclerosis (ALS), no longer possess voluntary muscle control. Assessing attention and cognitive function in these patients during the course of the disease is a challenging but essential task for both nursing staff and physicians. Approach. An electrophysiological cognition test battery, including auditory and semantic stimuli, was applied in a late-stage ALS patient at four different time points during a six-month epidural electrocorticography (ECoG) recording period. Event-related cortical potentials (ERP), together with changes in the ECoG signal spectrum, were recorded via 128 channels that partially covered the left frontal, temporal and parietal cortex. Main results. Auditory but not semantic stimuli induced significant and reproducible ERP projecting to specific temporal and parietal cortical areas. N1/P2 responses could be detected throughout the whole study period. The highest P3 ERP was measured immediately after the patient's last communication through voluntary muscle control, which was paralleled by low theta and high gamma spectral power. Three months after the patient's last communication, i.e., in the CLIS, P3 responses could no longer be detected. At the same time, increased activity in low-frequency bands and a sharp drop of gamma spectral power were recorded. Significance. Cortical electrophysiological measures indicate at least partially intact attention and cognitive function during sparse volitional motor control for communication. Although the P3 ERP and frequency-specific changes in the ECoG spectrum may serve as indicators for CLIS, a close-meshed monitoring will be required to define the exact time point of the transition.

ei

DOI [BibTex]

DOI [BibTex]


no image
Identifiability of Gaussian Structural Equation Models with Equal Error Variances

Peters, J., Bühlman, P.

Biometrika, 101(1):219-228, 2014 (article)

ei

DOI [BibTex]


no image
Quantifying the effect of intertrial dependence on perceptual decisions

Fründ, I., Wichmann, F., Macke, J.

Journal of Vision, 14(7):1-16, 2014 (article)

ei

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
Two numerical models designed to reproduce Saturn ring temperatures as measured by Cassini-CIRS

Altobelli, N., Lopez-Paz, D., Pilorz, S., Spilker, L., Morishima, R., Brooks, S., Leyrat, C., Deau, E., Edgington, S., Flandes, A.

Icarus, 238(0):205 - 220, 2014 (article)

ei

Web link (url) DOI [BibTex]

Web link (url) DOI [BibTex]


no image
CAM: Causal Additive Models, high-dimensional order search and penalized regression

Bühlmann, P., Peters, J., Ernest, J.

Annals of Statistics, 42(6):2526-2556, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Policy Evaluation with Temporal Differences: A Survey and Comparison

Dann, C., Neumann, G., Peters, J.

Journal of Machine Learning Research, 15, pages: 809-883, 2014 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Uncovering the Structure and Temporal Dynamics of Information Propagation

Gomez Rodriguez, M., Leskovec, J., Balduzzi, D., Schölkopf, B.

Network Science, 2(1):26-65, 2014 (article)

Abstract
Time plays an essential role in the diffusion of information, influence, and disease over networks. In many cases we can only observe when a node is activated by a contagion—when a node learns about a piece of information, makes a decision, adopts a new behavior, or becomes infected with a disease. However, the underlying network connectivity and transmission rates between nodes are unknown. Inferring the underlying diffusion dynamics is important because it leads to new insights and enables forecasting, as well as influencing or containing information propagation. In this paper we model diffusion as a continuous temporal process occurring at different rates over a latent, unobserved network that may change over time. Given information diffusion data, we infer the edges and dynamics of the underlying network. Our model naturally imposes sparse solutions and requires no parameter tuning. We develop an efficient inference algorithm that uses stochastic convex optimization to compute online estimates of the edges and transmission rates. We evaluate our method by tracking information diffusion among 3.3 million mainstream media sites and blogs, and experiment with more than 179 million different instances of information spreading over the network in a one-year period. We apply our network inference algorithm to the top 5,000 media sites and blogs and report several interesting observations. First, information pathways for general recurrent topics are more stable across time than for on-going news events. Second, clusters of news media sites and blogs often emerge and vanish in a matter of days for on-going news events. Finally, major events, for example, large scale civil unrest as in the Libyan civil war or Syrian uprising, increase the number of information pathways among blogs, and also increase the network centrality of blogs and social media sites.

ei

DOI [BibTex]


no image
Causal discovery via reproducing kernel Hilbert space embeddings

Chen, Z., Zhang, K., Chan, L., Schölkopf, B.

Neural Computation, 26(7):1484-1517, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Impact of Large-Scale Climate Extremes on Biospheric Carbon Fluxes: An Intercomparison Based on MsTMIP Data

Zscheischler, J., Michalak, A., Schwalm, M., Mahecha, M., Huntzinger, D., Reichstein, M., Berthier, G., Ciais, P., Cook, R., El-Masri, B., Huang, M., Ito, A., Jain, A., King, A., Lei, H., Lu, C., Mao, J., Peng, S., Poulter, B., Ricciuto, D., Shi, X., Tao, B., Tian, H., Viovy, N., Wang, W., Wei, Y., Yang, J., Zeng, N.

Global Biogeochemical Cycles, 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Brain-Computer Interface Based on Self-Regulation of Gamma-Oscillations in the Superior Parietal Cortex

Grosse-Wentrup, M., Schölkopf, B.

Journal of Neural Engineering, 11(5):056015, 2014 (article)

Abstract
Objective. Brain–computer interface (BCI) systems are often based on motor- and/or sensory processes that are known to be impaired in late stages of amyotrophic lateral sclerosis (ALS). We propose a novel BCI designed for patients in late stages of ALS that only requires high-level cognitive processes to transmit information from the user to the BCI. Approach. We trained subjects via EEG-based neurofeedback to self-regulate the amplitude of gamma-oscillations in the superior parietal cortex (SPC). We argue that parietal gamma-oscillations are likely to be associated with high-level attentional processes, thereby providing a communication channel that does not rely on the integrity of sensory- and/or motor-pathways impaired in late stages of ALS. Main results. Healthy subjects quickly learned to self-regulate gamma-power in the SPC by alternating between states of focused attention and relaxed wakefulness, resulting in an average decoding accuracy of 70.2%. One locked-in ALS patient (ALS-FRS-R score of zero) achieved an average decoding accuracy significantly above chance-level though insufficient for communication (55.8%). Significance. Self-regulation of gamma-power in the SPC is a feasible paradigm for brain–computer interfacing and may be preserved in late stages of ALS. This provides a novel approach to testing whether completely locked-in ALS patients retain the capacity for goal-directed thinking.

ei

Web DOI [BibTex]


no image
On power law distributions in large-scale taxonomies

Babbar, R., Metzig, C., Partalas, I., Gaussier, E., Amini, M.

SIGKDD Explorations, Special Issue on Big Data, 16(1):47-56, 2014 (article)

ei

[BibTex]

[BibTex]


no image
Predicting Motor Learning Performance from Electroencephalographic Data

Meyer, T., Peters, J., Zander, T., Schölkopf, B., Grosse-Wentrup, M.

Journal of NeuroEngineering and Rehabilitation, 11:24, 2014 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Special issue on autonomous grasping and manipulation

Ben Amor, H., Saxena, A., Hudson, N., Peters, J.

Autonomous Robots, 36(1-2):1-3, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Evaluation of Positron Emission Tomographic Tracers for Imaging of Papillomavirus-Induced Tumors in Rabbits

Probst, S., Wiehr, S., Mantlik, F., Schmidt, H., Kolb, A., Münch, P., Delcuratolo, M., Stubenrauch, F., Pichler, B., Iftner, T.

Molecular Imaging, 13(1):1536-0121, 2014 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Extreme events in gross primary production: a characterization across continents

Zscheischler, J., Reichstein, M., Harmeling, S., Rammig, A., Tomelleri, E., Mahecha, M.

Biogeosciences, 11, pages: 2909-2924, 2014 (article)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Indirect Robot Model Learning for Tracking Control

Bocsi, B., Csató, L., Peters, J.

Advanced Robotics, 28(9):589-599, 2014 (article)

ei

PDF DOI [BibTex]


no image
An extended approach for spatiotemporal gapfilling: dealing with large and systematic gaps in geoscientific datasets

v Buttlar, J., Zscheischler, J., Mahecha, M.

Nonlinear Processes in Geophysics, 21(1):203-215, 2014 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
On the Quantification Accuracy, Homogeneity, and Stability of Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging Systems

Schmidt, H., Schwenzer, N., Bezrukov, I., Mantlik, F., Kolb, A., Kupferschläger, J., Pichler, B.

Investigative Radiology, 49(6):373-381, 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Natural Evolution Strategies

Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., Schmidhuber, J.

Journal of Machine Learning Research, 15, pages: 949-980, 2014 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Factors controlling decomposition rates of fine root litter in temperate forests and grasslands

Solly, E., Schöning, I., Boch, S., Kandeler, E., Marhan, S., Michalzik, B., Müller, J., Zscheischler, J., Trumbore, S., Schrumpf, M.

Plant and Soil, 2014 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Causal Discovery with Continuous Additive Noise Models

Peters, J., Mooij, J., Janzing, D., Schölkopf, B.

Journal of Machine Learning Research, 15, pages: 2009-2053, 2014 (article)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A few extreme events dominate global interannual variability in gross primary production

Zscheischler, J., Mahecha, M., v Buttlar, J., Harmeling, S., Jung, M., Rammig, A., Randerson, J., Schölkopf, B., Seneviratne, S., Tomelleri, E., Zaehle, S., Reichstein, M.

Environmental Research Letters, 9(3):035001, 2014 (article)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Kernel methods in system identification, machine learning and function estimation: A survey

Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., Ljung, L.

Automatica, 50(3):657-682, 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding

Kolb, A., Parl, C., Mantlik, F., Liu, C., Lorenz, E., Renker, D., Pichler, B.

Medical Physics, 41(8), 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Epidural electrocorticography for monitoring of arousal in locked-in state

Martens, S., Bensch, M., Halder, S., Hill, J., Nijboer, F., Ramos-Murguialday, A., Schölkopf, B., Birbaumer, N., Gharabaghi, A.

Frontiers in Human Neuroscience, 8(861), 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Simultaneous Whole-Body PET/MR Imaging in Comparison to PET/CT in Pediatric Oncology: Initial Results

Schäfer, J. F., Gatidis, S., Schmidt, H., Gückel, B., Bezrukov, I., Pfannenberg, C. A., Reimold, M., M., E., Fuchs, J., Claussen, C. D., Schwenzer, N. F.

Radiology, 273(1):220-231, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
A Limiting Property of the Matrix Exponential

Trimpe, S., D’Andrea, R.

IEEE Transactions on Automatic Control, 59(4):1105-1110, 2014 (article)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Cost-Sensitive Active Learning With Lookahead: Optimizing Field Surveys for Remote Sensing Data Classification

Persello, C., Boularias, A., Dalponte, M., Gobakken, T., Naesset, E., Schölkopf, B.

IEEE Transactions on Geoscience and Remote Sensing, 10(52):6652 - 6664, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Principles of PET/MR Imaging

Disselhorst, J. A., Bezrukov, I., Kolb, A., Parl, C., Pichler, B. J.

Journal of Nuclear Medicine, 55(6, Supplement 2):2S-10S, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
IM3SHAPE: Maximum likelihood galaxy shear measurement code for cosmic gravitational lensing

Zuntz, J., Kacprzak, T., Voigt, L., Hirsch, M., Rowe, B., Bridle, S.

Astrophysics Source Code Library, 1, pages: 09013, 2014 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Event-Based State Estimation With Variance-Based Triggering

Trimpe, S., D’Andrea, R.

IEEE Transactions on Automatic Control, 59(12):3266-3281, 2014 (article)

am ics

PDF Supplementary material DOI Project Page [BibTex]

PDF Supplementary material DOI Project Page [BibTex]


no image
Efficient nearest neighbors via robust sparse hashing

Cherian, A., Sra, S., Morellas, V., Papanikolopoulos, N.

IEEE Transactions on Image Processing, 23(8):3646-3655, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Sérsic galaxy models in weak lensing shape measurement: model bias, noise bias and their interaction

Kacprzak, T., Bridle, S., Rowe, B., Voigt, L., Zuntz, J., Hirsch, M., MacCrann, N.

Monthly Notices of the Royal Astronomical Society, 441(3):2528-2538, Oxford University Press, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Diminished White Matter Integrity in Patients with Systemic Lupus Erythematosus

Schmidt-Wilcke, T., Cagnoli, P., Wang, P., Schultz, T., Lotz, A., Mccune, W. J., Sundgren, P. C.

NeuroImage: Clinical, 5, pages: 291-297, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Information-Theoretic Bounded Rationality and ϵ-Optimality

Braun, DA, Ortega, PA

Entropy, 16(8):4662-4676, August 2014 (article)

Abstract
Bounded rationality concerns the study of decision makers with limited information processing resources. Previously, the free energy difference functional has been suggested to model bounded rational decision making, as it provides a natural trade-off between an energy or utility function that is to be optimized and information processing costs that are measured by entropic search costs. The main question of this article is how the information-theoretic free energy model relates to simple \(\epsilon\)-optimality models of bounded rational decision making, where the decision maker is satisfied with any action in an \(\epsilon\)-neighborhood of the optimal utility. We find that the stochastic policies that optimize the free energy trade-off comply with the notion of \(\epsilon\)-optimality. Moreover, this optimality criterion even holds when the environment is adversarial. We conclude that the study of bounded rationality based on \(\epsilon\)-optimality criteria that abstract away from the particulars of the information processing constraints is compatible with the information-theoretic free energy model of bounded rationality.

ei

DOI [BibTex]

DOI [BibTex]


no image
Occam’s Razor in sensorimotor learning

Genewein, T, Braun, D

Proceedings of the Royal Society of London B, 281(1783):1-7, May 2014 (article)

Abstract
A large number of recent studies suggest that the sensorimotor system uses probabilistic models to predict its environment and makes inferences about unobserved variables in line with Bayesian statistics. One of the important features of Bayesian statistics is Occam's Razor—an inbuilt preference for simpler models when comparing competing models that explain some observed data equally well. Here, we test directly for Occam's Razor in sensorimotor control. We designed a sensorimotor task in which participants had to draw lines through clouds of noisy samples of an unobserved curve generated by one of two possible probabilistic models—a simple model with a large length scale, leading to smooth curves, and a complex model with a short length scale, leading to more wiggly curves. In training trials, participants were informed about the model that generated the stimulus so that they could learn the statistics of each model. In probe trials, participants were then exposed to ambiguous stimuli. In probe trials where the ambiguous stimulus could be fitted equally well by both models, we found that participants showed a clear preference for the simpler model. Moreover, we found that participants’ choice behaviour was quantitatively consistent with Bayesian Occam's Razor. We also show that participants’ drawn trajectories were similar to samples from the Bayesian predictive distribution over trajectories and significantly different from two non-probabilistic heuristics. In two control experiments, we show that the preference of the simpler model cannot be simply explained by a difference in physical effort or by a preference for curve smoothness. Our results suggest that Occam's Razor is a general behavioural principle already present during sensorimotor processing.

ei

DOI [BibTex]

DOI [BibTex]


no image
Generalized Thompson sampling for sequential decision-making and causal inference

Ortega, PA, Braun, DA

Complex Adaptive Systems Modeling, 2(2):1-23, March 2014 (article)

Abstract
Purpose Sampling an action according to the probability that the action is believed to be the optimal one is sometimes called Thompson sampling. Methods Although mostly applied to bandit problems, Thompson sampling can also be used to solve sequential adaptive control problems, when the optimal policy is known for each possible environment. The predictive distribution over actions can then be constructed by a Bayesian superposition of the policies weighted by their posterior probability of being optimal. Results Here we discuss two important features of this approach. First, we show in how far such generalized Thompson sampling can be regarded as an optimal strategy under limited information processing capabilities that constrain the sampling complexity of the decision-making process. Second, we show how such Thompson sampling can be extended to solve causal inference problems when interacting with an environment in a sequential fashion. Conclusion In summary, our results suggest that Thompson sampling might not merely be a useful heuristic, but a principled method to address problems of adaptive sequential decision-making and causal inference.

ei

DOI [BibTex]

DOI [BibTex]


no image
Assessing randomness and complexity in human motion trajectories through analysis of symbolic sequences

Peng, Z, Genewein, T, Braun, DA

Frontiers in Human Neuroscience, 8(168):1-13, March 2014 (article)

Abstract
Complexity is a hallmark of intelligent behavior consisting both of regular patterns and random variation. To quantitatively assess the complexity and randomness of human motion, we designed a motor task in which we translated subjects' motion trajectories into strings of symbol sequences. In the first part of the experiment participants were asked to perform self-paced movements to create repetitive patterns, copy pre-specified letter sequences, and generate random movements. To investigate whether the degree of randomness can be manipulated, in the second part of the experiment participants were asked to perform unpredictable movements in the context of a pursuit game, where they received feedback from an online Bayesian predictor guessing their next move. We analyzed symbol sequences representing subjects' motion trajectories with five common complexity measures: predictability, compressibility, approximate entropy, Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects’ self-created patterns were the most complex, followed by drawing movements of letters and self-paced random motion. We also found that participants could change the randomness of their behavior depending on context and feedback. Our results suggest that humans can adjust both complexity and regularity in different movement types and contexts and that this can be assessed with information-theoretic measures of the symbolic sequences generated from movement trajectories.

ei

DOI [BibTex]

DOI [BibTex]

2013


Thumb xl ijrr
Vision meets Robotics: The KITTI Dataset

Geiger, A., Lenz, P., Stiller, C., Urtasun, R.

International Journal of Robotics Research, 32(11):1231 - 1237 , Sage Publishing, September 2013 (article)

Abstract
We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation system. The scenarios are diverse, capturing real-world traffic situations and range from freeways over rural areas to inner-city scenes with many static and dynamic objects. Our data is calibrated, synchronized and timestamped, and we provide the rectified and raw image sequences. Our dataset also contains object labels in the form of 3D tracklets and we provide online benchmarks for stereo, optical flow, object detection and other tasks. This paper describes our recording platform, the data format and the utilities that we provide.

avg ps

pdf DOI [BibTex]

2013


pdf DOI [BibTex]


no image
Correlation of Simultaneously Acquired Diffusion-Weighted Imaging and 2-Deoxy-[18F] fluoro-2-D-glucose Positron Emission Tomography of Pulmonary Lesions in a Dedicated Whole-Body Magnetic Resonance/Positron Emission Tomography System

Schmidt, H., Brendle, C., Schraml, C., Martirosian, P., Bezrukov, I., Hetzel, J., Müller, M., Sauter, A., Claussen, C., Pfannenberg, C., Schwenzer, N.

Investigative Radiology, 48(5):247-255, May 2013 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Replacing Causal Faithfulness with Algorithmic Independence of Conditionals

Lemeire, J., Janzing, D.

Minds and Machines, 23(2):227-249, May 2013 (article)

Abstract
Independence of Conditionals (IC) has recently been proposed as a basic rule for causal structure learning. If a Bayesian network represents the causal structure, its Conditional Probability Distributions (CPDs) should be algorithmically independent. In this paper we compare IC with causal faithfulness (FF), stating that only those conditional independences that are implied by the causal Markov condition hold true. The latter is a basic postulate in common approaches to causal structure learning. The common spirit of FF and IC is to reject causal graphs for which the joint distribution looks ‘non-generic’. The difference lies in the notion of genericity: FF sometimes rejects models just because one of the CPDs is simple, for instance if the CPD describes a deterministic relation. IC does not behave in this undesirable way. It only rejects a model when there is a non-generic relation between different CPDs although each CPD looks generic when considered separately. Moreover, it detects relations between CPDs that cannot be captured by conditional independences. IC therefore helps in distinguishing causal graphs that induce the same conditional independences (i.e., they belong to the same Markov equivalence class). The usual justification for FF implicitly assumes a prior that is a probability density on the parameter space. IC can be justified by Solomonoff’s universal prior, assigning non-zero probability to those points in parameter space that have a finite description. In this way, it favours simple CPDs, and therefore respects Occam’s razor. Since Kolmogorov complexity is uncomputable, IC is not directly applicable in practice. We argue that it is nevertheless helpful, since it has already served as inspiration and justification for novel causal inference algorithms.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
What can neurons do for their brain? Communicate selectivity with bursts

Balduzzi, D., Tononi, G.

Theory in Biosciences , 132(1):27-39, Springer, March 2013 (article)

Abstract
Neurons deep in cortex interact with the environment extremely indirectly; the spikes they receive and produce are pre- and post-processed by millions of other neurons. This paper proposes two information-theoretic constraints guiding the production of spikes, that help ensure bursting activity deep in cortex relates meaningfully to events in the environment. First, neurons should emphasize selective responses with bursts. Second, neurons should propagate selective inputs by burst-firing in response to them. We show the constraints are necessary for bursts to dominate information-transfer within cortex, thereby providing a substrate allowing neurons to distribute credit amongst themselves. Finally, since synaptic plasticity degrades the ability of neurons to burst selectively, we argue that homeostatic regulation of synaptic weights is necessary, and that it is best performed offline during sleep.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Apprenticeship Learning with Few Examples

Boularias, A., Chaib-draa, B.

Neurocomputing, 104, pages: 83-96, March 2013 (article)

Abstract
We consider the problem of imitation learning when the examples, provided by an expert human, are scarce. Apprenticeship learning via inverse reinforcement learning provides an efficient tool for generalizing the examples, based on the assumption that the expert's policy maximizes a value function, which is a linear combination of state and action features. Most apprenticeship learning algorithms use only simple empirical averages of the features in the demonstrations as a statistics of the expert's policy. However, this method is efficient only when the number of examples is sufficiently large to cover most of the states, or the dynamics of the system is nearly deterministic. In this paper, we show that the quality of the learned policies is sensitive to the error in estimating the averages of the features when the dynamics of the system is stochastic. To reduce this error, we introduce two new approaches for bootstrapping the demonstrations by assuming that the expert is near-optimal and the dynamics of the system is known. In the first approach, the expert's examples are used to learn a reward function and to generate furthermore examples from the corresponding optimal policy. The second approach uses a transfer technique, known as graph homomorphism, in order to generalize the expert's actions to unvisited regions of the state space. Empirical results on simulated robot navigation problems show that our approach is able to learn sufficiently good policies from a significantly small number of examples.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl thumb hennigk2012 2
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

Journal of Machine Learning Research, 14(1):843-865, March 2013 (article)

Abstract
Four decades after their invention, quasi-Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

ei ps pn

website+code pdf link (url) [BibTex]

website+code pdf link (url) [BibTex]


no image
Regional effects of magnetization dispersion on quantitative perfusion imaging for pulsed and continuous arterial spin labeling

Cavusoglu, M., Pohmann, R., Burger, H. C., Uludag, K.

Magnetic Resonance in Medicine, 69(2):524-530, Febuary 2013 (article)

Abstract
Most experiments assume a global transit delay time with blood flowing from the tagging region to the imaging slice in plug flow without any dispersion of the magnetization. However, because of cardiac pulsation, nonuniform cross-sectional flow profile, and complex vessel networks, the transit delay time is not a single value but follows a distribution. In this study, we explored the regional effects of magnetization dispersion on quantitative perfusion imaging for varying transit times within a very large interval from the direct comparison of pulsed, pseudo-continuous, and dual-coil continuous arterial spin labeling encoding schemes. Longer distances between tagging and imaging region typically used for continuous tagging schemes enhance the regional bias on the quantitative cerebral blood flow measurement causing an underestimation up to 37% when plug flow is assumed as in the standard model.

ei

Web DOI [BibTex]

Web DOI [BibTex]