Header logo is


2020


Thumb xl hetl
Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks

Beuchert, J., Solowjow, F., Raisch, J., Trimpe, S., Seel, T.

IEEE Control Systems Letters, 4(1):103-108, January 2020 (article) To be published

ics

arXiv PDF DOI [BibTex]

2020


arXiv PDF DOI [BibTex]


Thumb xl l css
Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems

Baumann, D., Mager, F., Zimmerling, M., Trimpe, S.

IEEE Control Systems Letters, 4(1):127-132, January 2020 (article) To be published

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]

2019


Thumb xl celia
Decoding subcategories of human bodies from both body- and face-responsive cortical regions

Foster, C., Zhao, M., Romero, J., Black, M. J., Mohler, B. J., Bartels, A., Bülthoff, I.

NeuroImage, 202(15):116085, November 2019 (article)

Abstract
Our visual system can easily categorize objects (e.g. faces vs. bodies) and further differentiate them into subcategories (e.g. male vs. female). This ability is particularly important for objects of social significance, such as human faces and bodies. While many studies have demonstrated category selectivity to faces and bodies in the brain, how subcategories of faces and bodies are represented remains unclear. Here, we investigated how the brain encodes two prominent subcategories shared by both faces and bodies, sex and weight, and whether neural responses to these subcategories rely on low-level visual, high-level visual or semantic similarity. We recorded brain activity with fMRI while participants viewed faces and bodies that varied in sex, weight, and image size. The results showed that the sex of bodies can be decoded from both body- and face-responsive brain areas, with the former exhibiting more consistent size-invariant decoding than the latter. Body weight could also be decoded in face-responsive areas and in distributed body-responsive areas, and this decoding was also invariant to image size. The weight of faces could be decoded from the fusiform body area (FBA), and weight could be decoded across face and body stimuli in the extrastriate body area (EBA) and a distributed body-responsive area. The sex of well-controlled faces (e.g. excluding hairstyles) could not be decoded from face- or body-responsive regions. These results demonstrate that both face- and body-responsive brain regions encode information that can distinguish the sex and weight of bodies. Moreover, the neural patterns corresponding to sex and weight were invariant to image size and could sometimes generalize across face and body stimuli, suggesting that such subcategorical information is encoded with a high-level visual or semantic code.

ps

paper pdf DOI [BibTex]

2019


paper pdf DOI [BibTex]


Thumb xl screen shot 2019 04 18 at 5.55.23 pm
Series Elastic Behavior of Biarticular Muscle-Tendon Structure in a Robotic Leg

Ruppert, F., Badri-Spröwitz, A.

Frontiers in Neurorobotics, 64, pages: 13, 13, August 2019 (article)

dlg

Frontiers YouTube link (url) DOI [BibTex]

Frontiers YouTube link (url) DOI [BibTex]


Thumb xl screenshot 2019 08 19 at 13.54.21
Beyond Basins of Attraction: Quantifying Robustness of Natural Dynamics

Steve Heim, , Spröwitz, A.

IEEE Transactions on Robotics (T-RO) , 35(4), pages: 939-952, August 2019 (article)

Abstract
Properly designing a system to exhibit favorable natural dynamics can greatly simplify designing or learning the control policy. However, it is still unclear what constitutes favorable natural dynamics and how to quantify its effect. Most studies of simple walking and running models have focused on the basins of attraction of passive limit cycles and the notion of self-stability. We instead emphasize the importance of stepping beyond basins of attraction. In this paper, we show an approach based on viability theory to quantify robust sets in state-action space. These sets are valid for the family of all robust control policies, which allows us to quantify the robustness inherent to the natural dynamics before designing the control policy or specifying a control objective. We illustrate our formulation using spring-mass models, simple low-dimensional models of running systems. We then show an example application by optimizing robustness of a simulated planar monoped, using a gradient-free optimization scheme. Both case studies result in a nonlinear effective stiffness providing more robustness.

dlg

arXiv preprint arXiv:1806.08081 T-RO link (url) DOI Project Page [BibTex]

arXiv preprint arXiv:1806.08081 T-RO link (url) DOI Project Page [BibTex]


Thumb xl autonomous mocap cover image new
Active Perception based Formation Control for Multiple Aerial Vehicles

Tallamraju, R., Price, E., Ludwig, R., Karlapalem, K., Bülthoff, H. H., Black, M. J., Ahmad, A.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, IEEE, August 2019 (article) Accepted

Abstract
We present a novel robotic front-end for autonomous aerial motion-capture (mocap) in outdoor environments. In previous work, we presented an approach for cooperative detection and tracking (CDT) of a subject using multiple micro-aerial vehicles (MAVs). However, it did not ensure optimal view-point configurations of the MAVs to minimize the uncertainty in the person's cooperatively tracked 3D position estimate. In this article, we introduce an active approach for CDT. In contrast to cooperatively tracking only the 3D positions of the person, the MAVs can actively compute optimal local motion plans, resulting in optimal view-point configurations, which minimize the uncertainty in the tracked estimate. We achieve this by decoupling the goal of active tracking into a quadratic objective and non-convex constraints corresponding to angular configurations of the MAVs w.r.t. the person. We derive this decoupling using Gaussian observation model assumptions within the CDT algorithm. We preserve convexity in optimization by embedding all the non-convex constraints, including those for dynamic obstacle avoidance, as external control inputs in the MPC dynamics. Multiple real robot experiments and comparisons involving 3 MAVs in several challenging scenarios are presented.

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl motorized device
Implementation of a 6-DOF Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues

Young, E. M., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 12(3):295-306, June 2019 (article)

Abstract
Existing fingertip haptic devices can deliver different subsets of tactile cues in a compact package, but we have not yet seen a wearable six-degree-of-freedom (6-DOF) display. This paper presents the Fuppeteer (short for Fingertip Puppeteer), a device that is capable of controlling the position and orientation of a flat platform, such that any combination of normal and shear force can be delivered at any location on any human fingertip. We build on our previous work of designing a parallel continuum manipulator for fingertip haptics by presenting a motorized version in which six flexible Nitinol wires are actuated via independent roller mechanisms and proportional-derivative controllers. We evaluate the settling time and end-effector vibrations observed during system responses to step inputs. After creating a six-dimensional lookup table and adjusting simulated inputs using measured Jacobians, we show that the device can make contact with all parts of the fingertip with a mean error of 1.42 mm. Finally, we present results from a human-subject study. A total of 24 users discerned 9 evenly distributed contact locations with an average accuracy of 80.5%. Translational and rotational shear cues were identified reasonably well near the center of the fingertip and more poorly around the edges.

hi

DOI [BibTex]


Thumb xl trimpe2019resource image
Resource-aware IoT Control: Saving Communication through Predictive Triggering

Trimpe, S., Baumann, D.

IEEE Internet of Things Journal, 6(3):5013-5028, June 2019 (article)

Abstract
The Internet of Things (IoT) interconnects multiple physical devices in large-scale networks. When the 'things' coordinate decisions and act collectively on shared information, feedback is introduced between them. Multiple feedback loops are thus closed over a shared, general-purpose network. Traditional feedback control is unsuitable for design of IoT control because it relies on high-rate periodic communication and is ignorant of the shared network resource. Therefore, recent event-based estimation methods are applied herein for resource-aware IoT control allowing agents to decide online whether communication with other agents is needed, or not. While this can reduce network traffic significantly, a severe limitation of typical event-based approaches is the need for instantaneous triggering decisions that leave no time to reallocate freed resources (e.g., communication slots), which hence remain unused. To address this problem, novel predictive and self triggering protocols are proposed herein. From a unified Bayesian decision framework, two schemes are developed: self triggers that predict, at the current triggering instant, the next one; and predictive triggers that check at every time step, whether communication will be needed at a given prediction horizon. The suitability of these triggers for feedback control is demonstrated in hardware experiments on a cart-pole, and scalability is discussed with a multi-vehicle simulation.

ics

PDF arXiv DOI [BibTex]

PDF arXiv DOI [BibTex]


Thumb xl hessepami
Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences

Hesse, N., Pujades, S., Black, M., Arens, M., Hofmann, U., Schroeder, S.

Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019 (article)

Abstract
Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.

ps

pdf Journal DOI [BibTex]

pdf Journal DOI [BibTex]


Thumb xl m13 bacteriophages
Self-Assembled Phage-Based Colloids for High Localized Enzymatic Activity

Alarcon-Correa, M., Guenther, J., Troll, J., Kadiri, V. M., Bill, J., Fischer, P., Rothenstein, D.

ACS Nano, March 2019 (article)

Abstract
Catalytically active colloids are model systems for chemical motors and active matter. It is desirable to replace the inorganic catalysts and the toxic fuels that are often used, with biocompatible enzymatic reactions. However, compared to inorganic catalysts, enzyme-coated colloids tend to exhibit less activity. Here, we show that the self-assembly of genetically engineered M13 bacteriophages that bind enzymes to magnetic beads ensures high and localized enzymatic activity. These phage-decorated colloids provide a proteinaceous environment for directed enzyme immobilization. The magnetic properties of the colloidal carrier particle permit repeated enzyme recovery from a reaction solution, while the enzymatic activity is retained. Moreover, localizing the phage-based construct with a magnetic field in a microcontainer allows the enzyme-phage-colloids to function as an enzymatic micropump, where the enzymatic reaction generates a fluid flow. This system shows the fastest fluid flow reported to date by a biocompatible enzymatic micropump. In addition, it is functional in complex media including blood where the enzyme driven micropump can be powered at the physiological blood-urea concentration.

pf

link (url) DOI [BibTex]


Thumb xl jcp pfg nmr
Absolute diffusion measurements of active enzyme solutions by NMR

Guenther, J., Majer, G., Fischer, P.

J. Chem. Phys., 150(124201), March 2019 (article)

Abstract
The diffusion of enzymes is of fundamental importance for many biochemical processes. Enhanced or directed enzyme diffusion can alter the accessibility of substrates and the organization of enzymes within cells. Several studies based on fluorescence correlation spectroscopy (FCS) report enhanced diffusion of enzymes upon interaction with their substrate or inhibitor. In this context, major importance is given to the enzyme fructose-bisphosphate aldolase, for which enhanced diffusion has been reported even though the catalysed reaction is endothermic. Additionally, enhanced diffusion of tracer particles surrounding the active aldolase enzymes has been reported. These studies suggest that active enzymes can act as chemical motors that self-propel and give rise to enhanced diffusion. However, fluorescence studies of enzymes can, despite several advantages, suffer from artefacts. Here we show that the absolute diffusion coefficients of active enzyme solutions can be determined with Pulsed Field Gradient Nuclear Magnetic Resonance (PFG-NMR). The advantage of PFG-NMR is that the motion of the molecule of interest is directly observed in its native state without the need for any labelling. Further, PFG-NMR is model-free and thus yields absolute diffusion constants. Our PFG-NMR experiments of solutions containing active fructose-bisphosphate aldolase from rabbit muscle do not show any diffusion enhancement for the active enzymes nor the surrounding molecules. Additionally, we do not observe any diffusion enhancement of aldolase in the presence of its inhibitor pyrophosphate.

pf

link (url) DOI [BibTex]


Thumb xl activeoptorheologicalmedium
Chemical Nanomotors at the Gram Scale Form a Dense Active Optorheological Medium

Choudhury, U., Singh, D. P., Qiu, T., Fischer, P.

Adv. Mat., (1807382), Febuary 2019 (article)

Abstract
The rheological properties of a colloidal suspension are a function of the concentration of the colloids and their interactions. While suspensions of passive colloids are well studied and have been shown to form crystals, gels, and glasses, examples of energy‐consuming “active” colloidal suspensions are still largely unexplored. Active suspensions of biological matter, such as motile bacteria or dense mixtures of active actin–motor–protein mixtures have, respectively, reveals superfluid‐like and gel‐like states. Attractive inanimate systems for active matter are chemically self‐propelled particles. It has so far been challenging to use these swimming particles at high enough densities to affect the bulk material properties of the suspension. Here, it is shown that light‐triggered asymmetric titanium dioxide that self‐propel, can be obtained in large quantities, and self‐organize to make a gram‐scale active medium. The suspension shows an activity‐dependent tenfold reversible change in its bulk viscosity.

pf

link (url) DOI [BibTex]


Thumb xl kenny
Perceptual Effects of Inconsistency in Human Animations

Kenny, S., Mahmood, N., Honda, C., Black, M. J., Troje, N. F.

ACM Trans. Appl. Percept., 16(1):2:1-2:18, Febuary 2019 (article)

Abstract
The individual shape of the human body, including the geometry of its articulated structure and the distribution of weight over that structure, influences the kinematics of a person’s movements. How sensitive is the visual system to inconsistencies between shape and motion introduced by retargeting motion from one person onto the shape of another? We used optical motion capture to record five pairs of male performers with large differences in body weight, while they pushed, lifted, and threw objects. From these data, we estimated both the kinematics of the actions as well as the performer’s individual body shape. To obtain consistent and inconsistent stimuli, we created animated avatars by combining the shape and motion estimates from either a single performer or from different performers. Using these stimuli we conducted three experiments in an immersive virtual reality environment. First, a group of participants detected which of two stimuli was inconsistent. Performance was very low, and results were only marginally significant. Next, a second group of participants rated perceived attractiveness, eeriness, and humanness of consistent and inconsistent stimuli, but these judgements of animation characteristics were not affected by consistency of the stimuli. Finally, a third group of participants rated properties of the objects rather than of the performers. Here, we found strong influences of shape-motion inconsistency on perceived weight and thrown distance of objects. This suggests that the visual system relies on its knowledge of shape and motion and that these components are assimilated into an altered perception of the action outcome. We propose that the visual system attempts to resist inconsistent interpretations of human animations. Actions involving object manipulations present an opportunity for the visual system to reinterpret the introduced inconsistencies as a change in the dynamics of an object rather than as an unexpected combination of body shape and body motion.

ps

publisher pdf DOI [BibTex]

publisher pdf DOI [BibTex]


Thumb xl hyperrayleigh
First Observation of Optical Activity in Hyper-Rayleigh Scattering

Collins, J., Rusimova, K., Hooper, D., Jeong, H. H., Ohnoutek, L., Pradaux-Caggiano, F., Verbiest, T., Carbery, D., Fischer, P., Valev, V.

Phys. Rev. X, 9(011024), January 2019 (article)

Abstract
Chiral nano- or metamaterials and surfaces enable striking photonic properties, such as negative refractive index and superchiral light, driving promising applications in novel optical components, nanorobotics, and enhanced chiral molecular interactions with light. In characterizing chirality, although nonlinear chiroptical techniques are typically much more sensitive than their linear optical counterparts, separating true chirality from anisotropy is a major challenge. Here, we report the first observation of optical activity in second-harmonic hyper-Rayleigh scattering (HRS). We demonstrate the effect in a 3D isotropic suspension of Ag nanohelices in water. The effect is 5 orders of magnitude stronger than linear optical activity and is well pronounced above the multiphoton luminescence background. Because of its sensitivity, isotropic environment, and straightforward experimental geometry, HRS optical activity constitutes a fundamental experimental breakthrough in chiral photonics for media including nanomaterials, metamaterials, and chemical molecules.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl journal iav
Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study

Neumann-Brosig, M., Marco, A., Schwarzmann, D., Trimpe, S.

IEEE Transactions on Control Systems Technology, 2019 (article) Accepted

Abstract
Bayesian optimization is proposed for automatic learning of optimal controller parameters from experimental data. A probabilistic description (a Gaussian process) is used to model the unknown function from controller parameters to a user-defined cost. The probabilistic model is updated with data, which is obtained by testing a set of parameters on the physical system and evaluating the cost. In order to learn fast, the Bayesian optimization algorithm selects the next parameters to evaluate in a systematic way, for example, by maximizing information gain about the optimum. The algorithm thus iteratively finds the globally optimal parameters with only few experiments. Taking throttle valve control as a representative industrial control example, the proposed auto-tuning method is shown to outperform manual calibration: it consistently achieves better performance with a low number of experiments. The proposed auto-tuning framework is flexible and can handle different control structures and objectives.

ics

arXiv (PDF) DOI Project Page [BibTex]

arXiv (PDF) DOI Project Page [BibTex]


no image
How Does It Feel to Clap Hands with a Robot?

Fitter, N. T., Kuchenbecker, K. J.

International Journal of Social Robotics, 2019 (article) Accepted

Abstract
Future robots may need lighthearted physical interaction capabilities to connect with people in meaningful ways. To begin exploring how users perceive playful human–robot hand-to-hand interaction, we conducted a study with 20 participants. Each user played simple hand-clapping games with the Rethink Robotics Baxter Research Robot during a 1-h-long session involving 24 randomly ordered conditions that varied in facial reactivity, physical reactivity, arm stiffness, and clapping tempo. Survey data and experiment recordings demonstrate that this interaction is viable: all users successfully completed the experiment and mentioned enjoying at least one game without prompting. Hand-clapping tempo was highly salient to users, and human-like robot errors were more widely accepted than mechanical errors. Furthermore, perceptions of Baxter varied in the following statistically significant ways: facial reactivity increased the robot’s perceived pleasantness and energeticness; physical reactivity decreased pleasantness, energeticness, and dominance; higher arm stiffness increased safety and decreased dominance; and faster tempo increased energeticness and increased dominance. These findings can motivate and guide roboticists who want to design social–physical human–robot interactions.

hi

[BibTex]

[BibTex]


Thumb xl virtualcaliper
The Virtual Caliper: Rapid Creation of Metrically Accurate Avatars from 3D Measurements

Pujades, S., Mohler, B., Thaler, A., Tesch, J., Mahmood, N., Hesse, N., Bülthoff, H. H., Black, M. J.

IEEE Transactions on Visualization and Computer Graphics, 25, pages: 1887,1897, IEEE, 2019 (article)

Abstract
Creating metrically accurate avatars is important for many applications such as virtual clothing try-on, ergonomics, medicine, immersive social media, telepresence, and gaming. Creating avatars that precisely represent a particular individual is challenging however, due to the need for expensive 3D scanners, privacy issues with photographs or videos, and difficulty in making accurate tailoring measurements. We overcome these challenges by creating “The Virtual Caliper”, which uses VR game controllers to make simple measurements. First, we establish what body measurements users can reliably make on their own body. We find several distance measurements to be good candidates and then verify that these are linearly related to 3D body shape as represented by the SMPL body model. The Virtual Caliper enables novice users to accurately measure themselves and create an avatar with their own body shape. We evaluate the metric accuracy relative to ground truth 3D body scan data, compare the method quantitatively to other avatar creation tools, and perform extensive perceptual studies. We also provide a software application to the community that enables novices to rapidly create avatars in fewer than five minutes. Not only is our approach more rapid than existing methods, it exports a metrically accurate 3D avatar model that is rigged and skinned.

ps

Project Page IEEE Open Access IEEE Open Access PDF DOI [BibTex]

Project Page IEEE Open Access IEEE Open Access PDF DOI [BibTex]


Thumb xl mode changes long exp
Fast Feedback Control over Multi-hop Wireless Networks with Mode Changes and Stability Guarantees

Baumann, D., Mager, F., Jacob, R., Thiele, L., Zimmerling, M., Trimpe, S.

ACM Transactions on Cyber-Physical Systems, 2019 (article) Accepted

ics

[BibTex]

[BibTex]

2018


Thumb xl toc image
Role of symmetry in driven propulsion at low Reynolds number

Sachs, J., Morozov, K. I., Kenneth, O., Qiu, T., Segreto, N., Fischer, P., Leshansky, A. M.

Phys. Rev. E, 98(6):063105, American Physical Society, December 2018 (article)

Abstract
We theoretically and experimentally investigate low-Reynolds-number propulsion of geometrically achiral planar objects that possess a dipole moment and that are driven by a rotating magnetic field. Symmetry considerations (involving parity, $\widehat{P}$, and charge conjugation, $\widehat{C}$) establish correspondence between propulsive states depending on orientation of the dipolar moment. Although basic symmetry arguments do not forbid individual symmetric objects to efficiently propel due to spontaneous symmetry breaking, they suggest that the average ensemble velocity vanishes. Some additional arguments show, however, that highly symmetrical ($\widehat{P}$-even) objects exhibit no net propulsion while individual less symmetrical ($\widehat{C}\widehat{P}$-even) propellers do propel. Particular magnetization orientation, rendering the shape $\widehat{C}\widehat{P}$-odd, yields unidirectional motion typically associated with chiral structures, such as helices. If instead of a structure with a permanent dipole we consider a polarizable object, some of the arguments have to be modified. For instance, we demonstrate a truly achiral ($\widehat{P}$- and $\widehat{C}\widehat{P}$-even) planar shape with an induced electric dipole that can propel by electro-rotation. We thereby show that chirality is not essential for propulsion due to rotation-translation coupling at low Reynolds number.

pf

link (url) DOI Project Page [BibTex]

2018


link (url) DOI Project Page [BibTex]


Thumb xl toc image
Optical and Thermophoretic Control of Janus Nanopen Injection into Living Cells

Maier, C. M., Huergo, M. A., Milosevic, S., Pernpeintner, C., Li, M., Singh, D. P., Walker, D., Fischer, P., Feldmann, J., Lohmüller, T.

Nano Letters, 18, pages: 7935–7941, November 2018 (article) Accepted

Abstract
Devising strategies for the controlled injection of functional nanoparticles and reagents into living cells paves the way for novel applications in nanosurgery, sensing, and drug delivery. Here, we demonstrate the light-controlled guiding and injection of plasmonic Janus nanopens into living cells. The pens are made of a gold nanoparticle attached to a dielectric alumina shaft. Balancing optical and thermophoretic forces in an optical tweezer allows single Janus nanopens to be trapped and positioned on the surface of living cells. While the optical injection process involves strong heating of the plasmonic side, the temperature of the alumina stays significantly lower, thus allowing the functionalization with fluorescently labeled, single-stranded DNA and, hence, the spatially controlled injection of genetic material with an untethered nanocarrier.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl content nanoroboter werden ins auge injiziert
A swarm of slippery micropropellers penetrates the vitreous body of the eye

Wu, Z., Troll, J., Jeong, H. H., Wei, Q., Stang, M., Ziemssen, F., Wang, Z., Dong, M., Schnichels, S., Qiu, T., Fischer, P.

Science Advances, 4(11):eaat4388, November 2018 (article)

Abstract
The intravitreal delivery of therapeutic agents promises major benefits in the field of ocular medicine. Traditional delivery methods rely on the random, passive diffusion of molecules, which do not allow for the rapid delivery of a concentrated cargo to a defined region at the posterior pole of the eye. The use of particles promises targeted delivery but faces the challenge that most tissues including the vitreous have a tight macromolecular matrix that acts as a barrier and prevents its penetration. Here, we demonstrate novel intravitreal delivery microvehicles slippery micropropellers that can be actively propelled through the vitreous humor to reach the retina. The propulsion is achieved by helical magnetic micropropellers that have a liquid layer coating to minimize adhesion to the surrounding biopolymeric network. The submicrometer diameter of the propellers enables the penetration of the biopolymeric network and the propulsion through the porcine vitreous body of the eye over centimeter distances. Clinical optical coherence tomography is used to monitor the movement of the propellers and confirm their arrival on the retina near the optic disc. Overcoming the adhesion forces and actively navigating a swarm of micropropellers in the dense vitreous humor promise practical applications in ophthalmology.

pf

Video: Nanorobots propel through the eye link (url) DOI [BibTex]

Video: Nanorobots propel through the eye link (url) DOI [BibTex]


Thumb xl dip final
Deep Inertial Poser: Learning to Reconstruct Human Pose from Sparse Inertial Measurements in Real Time

Huang, Y., Kaufmann, M., Aksan, E., Black, M. J., Hilliges, O., Pons-Moll, G.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 37, pages: 185:1-185:15, ACM, November 2018, Two first authors contributed equally (article)

Abstract
We demonstrate a novel deep neural network capable of reconstructing human full body pose in real-time from 6 Inertial Measurement Units (IMUs) worn on the user's body. In doing so, we address several difficult challenges. First, the problem is severely under-constrained as multiple pose parameters produce the same IMU orientations. Second, capturing IMU data in conjunction with ground-truth poses is expensive and difficult to do in many target application scenarios (e.g., outdoors). Third, modeling temporal dependencies through non-linear optimization has proven effective in prior work but makes real-time prediction infeasible. To address this important limitation, we learn the temporal pose priors using deep learning. To learn from sufficient data, we synthesize IMU data from motion capture datasets. A bi-directional RNN architecture leverages past and future information that is available at training time. At test time, we deploy the network in a sliding window fashion, retaining real time capabilities. To evaluate our method, we recorded DIP-IMU, a dataset consisting of 10 subjects wearing 17 IMUs for validation in 64 sequences with 330,000 time instants; this constitutes the largest IMU dataset publicly available. We quantitatively evaluate our approach on multiple datasets and show results from a real-time implementation. DIP-IMU and the code are available for research purposes.

ps

data code pdf preprint video DOI Project Page [BibTex]

data code pdf preprint video DOI Project Page [BibTex]


Thumb xl cover
Deep Neural Network-based Cooperative Visual Tracking through Multiple Micro Aerial Vehicles

Price, E., Lawless, G., Ludwig, R., Martinovic, I., Buelthoff, H. H., Black, M. J., Ahmad, A.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 3(4):3193-3200, IEEE, October 2018, Also accepted and presented in the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (article)

Abstract
Multi-camera tracking of humans and animals in outdoor environments is a relevant and challenging problem. Our approach to it involves a team of cooperating micro aerial vehicles (MAVs) with on-board cameras only. DNNs often fail at objects with small scale or far away from the camera, which are typical characteristics of a scenario with aerial robots. Thus, the core problem addressed in this paper is how to achieve on-board, online, continuous and accurate vision-based detections using DNNs for visual person tracking through MAVs. Our solution leverages cooperation among multiple MAVs and active selection of most informative regions of image. We demonstrate the efficiency of our approach through simulations with up to 16 robots and real robot experiments involving two aerial robots tracking a person, while maintaining an active perception-driven formation. ROS-based source code is provided for the benefit of the community.

ps

Published Version link (url) DOI [BibTex]

Published Version link (url) DOI [BibTex]


Thumb xl huggiebot
Softness, Warmth, and Responsiveness Improve Robot Hugs

Block, A. E., Kuchenbecker, K. J.

International Journal of Social Robotics, 11(1):49-64, October 2018 (article)

Abstract
Hugs are one of the first forms of contact and affection humans experience. Due to their prevalence and health benefits, roboticists are naturally interested in having robots one day hug humans as seamlessly as humans hug other humans. This project's purpose is to evaluate human responses to different robot physical characteristics and hugging behaviors. Specifically, we aim to test the hypothesis that a soft, warm, touch-sensitive PR2 humanoid robot can provide humans with satisfying hugs by matching both their hugging pressure and their hugging duration. Thirty relatively young and rather technical participants experienced and evaluated twelve hugs with the robot, divided into three randomly ordered trials that focused on physical robot characteristics (single factor, three levels) and nine randomly ordered trials with low, medium, and high hug pressure and duration (two factors, three levels each). Analysis of the results showed that people significantly prefer soft, warm hugs over hard, cold hugs. Furthermore, users prefer hugs that physically squeeze them and release immediately when they are ready for the hug to end. Taking part in the experiment also significantly increased positive user opinions of robots and robot use.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl alice
First Impressions of Personality Traits From Body Shapes

Hu, Y., Parde, C. J., Hill, M. Q., Mahmood, N., O’Toole, A. J.

Psychological Science, 29(12):1969-–1983, October 2018 (article)

Abstract
People infer the personalities of others from their facial appearance. Whether they do so from body shapes is less studied. We explored personality inferences made from body shapes. Participants rated personality traits for male and female bodies generated with a three-dimensional body model. Multivariate spaces created from these ratings indicated that people evaluate bodies on valence and agency in ways that directly contrast positive and negative traits from the Big Five domains. Body-trait stereotypes based on the trait ratings revealed a myriad of diverse body shapes that typify individual traits. Personality-trait profiles were predicted reliably from a subset of the body-shape features used to specify the three-dimensional bodies. Body features related to extraversion and conscientiousness were predicted with the highest consensus, followed by openness traits. This study provides the first comprehensive look at the range, diversity, and reliability of personality inferences that people make from body shapes.

ps

publisher site pdf DOI [BibTex]

publisher site pdf DOI [BibTex]


Thumb xl toc image
Fast spatial scanning of 3D ultrasound fields via thermography

Melde, K., Qiu, T., Fischer, P.

Applied Physics Letters, 113(13):133503, September 2018 (article)

Abstract
We propose and demonstrate a thermographic method that allows rapid scanning of ultrasound fields in a volume to yield 3D maps of the sound intensity. A thin sound-absorbing membrane is continuously translated through a volume of interest while a thermal camera records the evolution of its surface temperature. The temperature rise is a function of the absorbed sound intensity, such that the thermal image sequence can be combined to reveal the sound intensity distribution in the traversed volume. We demonstrate the mapping of ultrasound fields, which is several orders of magnitude faster than scanning with a hydrophone. Our results are in very good agreement with theoretical simulations.

pf

link (url) DOI Project Page [BibTex]


Thumb xl fict 05 00018 g003
Visual Perception and Evaluation of Photo-Realistic Self-Avatars From 3D Body Scans in Males and Females

Thaler, A., Piryankova, I., Stefanucci, J. K., Pujades, S., de la Rosa, S., Streuber, S., Romero, J., Black, M. J., Mohler, B. J.

Frontiers in ICT, 5, pages: 1-14, September 2018 (article)

Abstract
The creation or streaming of photo-realistic self-avatars is important for virtual reality applications that aim for perception and action to replicate real world experience. The appearance and recognition of a digital self-avatar may be especially important for applications related to telepresence, embodied virtual reality, or immersive games. We investigated gender differences in the use of visual cues (shape, texture) of a self-avatar for estimating body weight and evaluating avatar appearance. A full-body scanner was used to capture each participant's body geometry and color information and a set of 3D virtual avatars with realistic weight variations was created based on a statistical body model. Additionally, a second set of avatars was created with an average underlying body shape matched to each participant’s height and weight. In four sets of psychophysical experiments, the influence of visual cues on the accuracy of body weight estimation and the sensitivity to weight changes was assessed by manipulating body shape (own, average) and texture (own photo-realistic, checkerboard). The avatars were presented on a large-screen display, and participants responded to whether the avatar's weight corresponded to their own weight. Participants also adjusted the avatar's weight to their desired weight and evaluated the avatar's appearance with regard to similarity to their own body, uncanniness, and their willingness to accept it as a digital representation of the self. The results of the psychophysical experiments revealed no gender difference in the accuracy of estimating body weight in avatars. However, males accepted a larger weight range of the avatars as corresponding to their own. In terms of the ideal body weight, females but not males desired a thinner body. With regard to the evaluation of avatar appearance, the questionnaire responses suggest that own photo-realistic texture was more important to males for higher similarity ratings, while own body shape seemed to be more important to females. These results argue for gender-specific considerations when creating self-avatars.

ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl toc image
Diffusion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy

Günther, J., Börsch, M., Fischer, P.

Accounts of Chemical Research, 51(9):1911-1920, August 2018 (article)

Abstract
Self-propelled chemical motors are chemically powered micro- or nanosized swimmers. The energy required for these motors’ active motion derives from catalytic chemical reactions and the transformation of a fuel dissolved in the solution. While self-propulsion is now well established for larger particles, it is still unclear if enzymes, nature’s nanometer-sized catalysts, are potentially also self-powered nanomotors. Because of its small size, any increase in an enzyme’s diffusion due to active self-propulsion must be observed on top of the enzyme’s passive Brownian motion, which dominates at this scale. Fluorescence correlation spectroscopy (FCS) is a sensitive method to quantify the diffusion properties of single fluorescently labeled molecules in solution. FCS experiments have shown a general increase in the diffusion constant of a number of enzymes when the enzyme is catalytically active. Diffusion enhancements after addition of the enzyme’s substrate (and sometimes its inhibitor) of up to 80\% have been reported, which is at least 1 order of magnitude higher than what theory would predict. However, many factors contribute to the FCS signal and in particular the shape of the autocorrelation function, which underlies diffusion measurements by fluorescence correlation spectroscopy. These effects need to be considered to establish if and by how much the catalytic activity changes an enzyme’s diffusion.We carefully review phenomena that can play a role in FCS experiments and the determination of enzyme diffusion, including the dissociation of enzyme oligomers upon interaction with the substrate, surface binding of the enzyme to glass during the experiment, conformational changes upon binding, and quenching of the fluorophore. We show that these effects can cause changes in the FCS signal that behave similar to an increase in diffusion. However, in the case of the enzymes F1-ATPase and alkaline phosphatase, we demonstrate that there is no measurable increase in enzyme diffusion. Rather, dissociation and conformational changes account for the changes in the FCS signal in the former and fluorophore quenching in the latter. Within the experimental accuracy of our FCS measurements, we do not observe any change in diffusion due to activity for the enzymes we have investigated.We suggest useful control experiments and additional tests for future FCS experiments that should help establish if the observed diffusion enhancement is real or if it is due to an experimental or data analysis artifact. We show that fluorescence lifetime and mean intensity measurements are essential in order to identify the nature of the observed changes in the autocorrelation function. While it is clear from theory that chemically active enzymes should also act as self-propelled nanomotors, our FCS measurements show that the associated increase in diffusion is much smaller than previously reported. Further experiments are needed to quantify the contribution of the enzymes’ catalytic activity to their self-propulsion. We hope that our findings help to establish a useful protocol for future FCS studies in this field and help establish by how much the diffusion of an enzyme is enhanced through catalytic activity.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl toc imagen
Uphill production of dihydrogen by enzymatic oxidation of glucose without an external energy source

Suraniti, E., Merzeau, P., Roche, J., Gounel, S., Mark, A. G., Fischer, P., Mano, N., Kuhn, A.

Nature Communications, 9(1):3229, August 2018 (article)

Abstract
Chemical systems do not allow the coupling of energy from several simple reactions to drive a subsequent reaction, which takes place in the same medium and leads to a product with a higher energy than the one released during the first reaction. Gibbs energy considerations thus are not favorable to drive e.g., water splitting by the direct oxidation of glucose as a model reaction. Here, we show that it is nevertheless possible to carry out such an energetically uphill reaction, if the electrons released in the oxidation reaction are temporarily stored in an electromagnetic system, which is then used to raise the electrons' potential energy so that they can power the electrolysis of water in a second step. We thereby demonstrate the general concept that lower energy delivering chemical reactions can be used to enable the formation of higher energy consuming reaction products in a closed system.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl toc image
Chemical micromotors self-assemble and self-propel by spontaneous symmetry breaking

Yu, T., Chuphal, P., Thakur, S., Reigh, S. Y., Singh, D. P., Fischer, P.

Chem. Comm., 54, pages: 11933-11936, August 2018 (article)

Abstract
Self-propelling chemical motors have thus far required the fabrication of Janus particles with an asymmetric catalyst distribution. Here, we demonstrate that simple, isotropic colloids can spontaneously assemble to yield dimer motors that self-propel. In a mixture of isotropic titanium dioxide colloids with photo-chemical catalytic activity and passive silica colloids, light illumination causes diffusiophoretic attractions between the active and passive particles and leads to the formation of dimers. The dimers constitute a symmetry-broken motor, whose dynamics can be fully controlled by the illumination conditions. Computer simulations reproduce the dynamics of the colloids and are in good agreement with experiments. The current work presents a simple route to obtain large numbers of self-propelling chemical motors from a dispersion of spherically symmetric colloids through spontaneous symmetry breaking.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl toc image
Chemotaxis of Active Janus Nanoparticles

Popescu, M. N., Uspal, W. E., Bechinger, C., Fischer, P.

Nano Letters, 18(9):5345–5349, July 2018 (article)

Abstract
While colloids and molecules in solution exhibit passive Brownian motion, particles that are partially covered with a catalyst, which promotes the transformation of a fuel dissolved in the solution, can actively move. These active Janus particles are known as “chemical nanomotors” or self-propelling “swimmers” and have been realized with a range of catalysts, sizes, and particle geometries. Because their active translation depends on the fuel concentration, one expects that active colloidal particles should also be able to swim toward a fuel source. Synthesizing and engineering nanoparticles with distinct chemotactic properties may enable important developments, such as particles that can autonomously swim along a pH gradient toward a tumor. Chemotaxis requires that the particles possess an active coupling of their orientation to a chemical gradient. In this Perspective we provide a simple, intuitive description of the underlying mechanisms for chemotaxis, as well as the means to analyze and classify active particles that can show positive or negative chemotaxis. The classification provides guidance for engineering a specific response and is a useful organizing framework for the quantitative analysis and modeling of chemotactic behaviors. Chemotaxis is emerging as an important focus area in the field of active colloids and promises a number of fascinating applications for nanoparticles and particle-based delivery.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Task-Driven PCA-Based Design Optimization of Wearable Cutaneous Devices

Pacchierotti, C., Young, E. M., Kuchenbecker, K. J.

IEEE Robotics and Automation Letters, 3(3):2214-2221, July 2018, Presented at ICRA 2018 (article)

Abstract
Small size and low weight are critical requirements for wearable and portable haptic interfaces, making it essential to work toward the optimization of their sensing and actuation systems. This paper presents a new approach for task-driven design optimization of fingertip cutaneous haptic devices. Given one (or more) target tactile interactions to render and a cutaneous device to optimize, we evaluate the minimum number and best configuration of the device’s actuators to minimize the estimated haptic rendering error. First, we calculate the motion needed for the original cutaneous device to render the considered target interaction. Then, we run a principal component analysis (PCA) to search for possible couplings between the original motor inputs, looking also for the best way to reconfigure them. If some couplings exist, we can re-design our cutaneous device with fewer motors, optimally configured to render the target tactile sensation. The proposed approach is quite general and can be applied to different tactile sensors and cutaneous devices. We validated it using a BioTac tactile sensor and custom plate-based 3-DoF and 6-DoF fingertip cutaneous devices, considering six representative target tactile interactions. The algorithm was able to find couplings between each device’s motor inputs, proving it to be a viable approach to optimize the design of wearable and portable cutaneous devices. Finally, we present two examples of optimized designs for our 3-DoF fingertip cutaneous device.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning an Approximate Model Predictive Controller with Guarantees

Hertneck, M., Koehler, J., Trimpe, S., Allgöwer, F.

IEEE Control Systems Letters, 2(3):543-548, July 2018 (article)

Abstract
A supervised learning framework is proposed to approximate a model predictive controller (MPC) with reduced computational complexity and guarantees on stability and constraint satisfaction. The framework can be used for a wide class of nonlinear systems. Any standard supervised learning technique (e.g. neural networks) can be employed to approximate the MPC from samples. In order to obtain closed-loop guarantees for the learned MPC, a robust MPC design is combined with statistical learning bounds. The MPC design ensures robustness to inaccurate inputs within given bounds, and Hoeffding’s Inequality is used to validate that the learned MPC satisfies these bounds with high confidence. The result is a closed-loop statistical guarantee on stability and constraint satisfaction for the learned MPC. The proposed learning-based MPC framework is illustrated on a nonlinear benchmark problem, for which we learn a neural network controller with guarantees.

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


Thumb xl mazen
Robust Physics-based Motion Retargeting with Realistic Body Shapes

Borno, M. A., Righetti, L., Black, M. J., Delp, S. L., Fiume, E., Romero, J.

Computer Graphics Forum, 37, pages: 6:1-12, July 2018 (article)

Abstract
Motion capture is often retargeted to new, and sometimes drastically different, characters. When the characters take on realistic human shapes, however, we become more sensitive to the motion looking right. This means adapting it to be consistent with the physical constraints imposed by different body shapes. We show how to take realistic 3D human shapes, approximate them using a simplified representation, and animate them so that they move realistically using physically-based retargeting. We develop a novel spacetime optimization approach that learns and robustly adapts physical controllers to new bodies and constraints. The approach automatically adapts the motion of the mocap subject to the body shape of a target subject. This motion respects the physical properties of the new body and every body shape results in a different and appropriate movement. This makes it easy to create a varied set of motions from a single mocap sequence by simply varying the characters. In an interactive environment, successful retargeting requires adapting the motion to unexpected external forces. We achieve robustness to such forces using a novel LQR-tree formulation. We show that the simulated motions look appropriate to each character’s anatomy and their actions are robust to perturbations.

mg ps

pdf video Project Page Project Page [BibTex]

pdf video Project Page Project Page [BibTex]


Thumb xl fitter18 frai imus
Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn IMUs

Fitter, N. T., Kuchenbecker, K. J.

Frontiers in Robotics and Artificial Intelligence, 5(85), July 2018 (article)

Abstract
Colleagues often shake hands in greeting, friends connect through high fives, and children around the world rejoice in hand-clapping games. As robots become more common in everyday human life, they will have the opportunity to join in these social-physical interactions, but few current robots are intended to touch people in friendly ways. This article describes how we enabled a Baxter Research Robot to both teach and learn bimanual hand-clapping games with a human partner. Our system monitors the user's motions via a pair of inertial measurement units (IMUs) worn on the wrists. We recorded a labeled library of 10 common hand-clapping movements from 10 participants; this dataset was used to train an SVM classifier to automatically identify hand-clapping motions from previously unseen participants with a test-set classification accuracy of 97.0%. Baxter uses these sensors and this classifier to quickly identify the motions of its human gameplay partner, so that it can join in hand-clapping games. This system was evaluated by N = 24 naïve users in an experiment that involved learning sequences of eight motions from Baxter, teaching Baxter eight-motion game patterns, and completing a free interaction period. The motion classification accuracy in this less structured setting was 85.9%, primarily due to unexpected variations in motion timing. The quantitative task performance results and qualitative participant survey responses showed that learning games from Baxter was significantly easier than teaching games to Baxter, and that the teaching role caused users to consider more teamwork aspects of the gameplay. Over the course of the experiment, people felt more understood by Baxter and became more willing to follow the example of the robot. Users felt uniformly safe interacting with Baxter, and they expressed positive opinions of Baxter and reported fun interacting with the robot. Taken together, the results indicate that this robot achieved credible social-physical interaction with humans and that its ability to both lead and follow systematically changed the human partner's experience.

hi

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2018 03 22 at 10.40.47 am
Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs

Sproewitz, A., Tuleu, A., Ajallooeian, M., Vespignani, M., Moeckel, R., Eckert, P., D’Haene, M., Degrave, J., Nordmann, A., Schrauwen, B., Steil, J., Ijspeert, A. J.

Frontiers in Robotics and AI, 5(67), June 2018, arXiv: 1803.06259 (article)

Abstract
We present Oncilla robot, a novel mobile, quadruped legged locomotion machine. This large-cat sized, 5.1 robot is one of a kind of a recent, bioinspired legged robot class designed with the capability of model-free locomotion control. Animal legged locomotion in rough terrain is clearly shaped by sensor feedback systems. Results with Oncilla robot show that agile and versatile locomotion is possible without sensory signals to some extend, and tracking becomes robust when feedback control is added (Ajaoolleian 2015). By incorporating mechanical and control blueprints inspired from animals, and by observing the resulting robot locomotion characteristics, we aim to understand the contribution of individual components. Legged robots have a wide mechanical and control design parameter space, and a unique potential as research tools to investigate principles of biomechanics and legged locomotion control. But the hardware and controller design can be a steep initial hurdle for academic research. To facilitate the easy start and development of legged robots, Oncilla-robot's blueprints are available through open-source. [...]

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl propultion. of helical m
Bioinspired microrobots

Palagi, S., Fischer, P.

Nature Reviews Materials, 3, pages: 113–124, May 2018 (article)

Abstract
Microorganisms can move in complex media, respond to the environment and self-organize. The field of microrobotics strives to achieve these functions in mobile robotic systems of sub-millimetre size. However, miniaturization of traditional robots and their control systems to the microscale is not a viable approach. A promising alternative strategy in developing microrobots is to implement sensing, actuation and control directly in the materials, thereby mimicking biological matter. In this Review, we discuss design principles and materials for the implementation of robotic functionalities in microrobots. We examine different biological locomotion strategies, and we discuss how they can be artificially recreated in magnetic microrobots and how soft materials improve control and performance. We show that smart, stimuli-responsive materials can act as on-board sensors and actuators and that ‘active matter’ enables autonomous motion, navigation and collective behaviours. Finally, we provide a critical outlook for the field of microrobotics and highlight the challenges that need to be overcome to realize sophisticated microrobots, which one day might rival biological machines.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl graphene silver hybrid
Graphene-silver hybrid devices for sensitive photodetection in the ultraviolet

Paria, D., Jeong, H. H., Vadakkumbatt, V., Deshpande, P., Fischer, P., Ghosh, A., Ghosh, A.

Nanoscale, 10, pages: 7685-7693, April 2018 (article)

Abstract
The weak light-matter interaction in graphene can be enhanced with a number of strategies, among which sensitization with plasmonic nanostructures is particularly attractive. This has resulted in the development of graphene-plasmonic hybrid systems with strongly enhanced photodetection efficiencies in the visible and the IR, but none in the UV. Here, we describe a silver nanoparticle-graphene stacked optoelectronic device that shows strong enhancement of its photoresponse across the entire UV spectrum. The device fabrication strategy is scalable and modular. Self-assembly techniques are combined with physical shadow growth techniques to fabricate a regular large-area array of 50 nm silver nanoparticles onto which CVD graphene is transferred. The presence of the silver nanoparticles resulted in a plasmonically enhanced photoresponse as high as 3.2 A W-1 in the wavelength range from 330 nm to 450 nm. At lower wavelengths, close to the Van Hove singularity of the density of states in graphene, we measured an even higher responsivity of 14.5 A W-1 at 280 nm, which corresponds to a more than 10 000-fold enhancement over the photoresponse of native graphene.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl focus cover
Nanoparticles on the move for medicine

Fischer, P.

Physics World Focus on Nanotechnology, pages: 26028, (Editors: Margaret Harris), IOP Publishing Ltd and individual contributors, April 2018 (article)

Abstract
Peer Fischer outlines the prospects for creating “nanoswimmers” that can be steered through the body to deliver drugs directly to their targets Molecules don’t move very fast on their own. If they had to rely solely on diffusion – a slow and inefficient process linked to the Brownian motion of small particles and molecules in solution – then a protein mole­cule, for instance, would take around three weeks to travel a single centimetre down a nerve fibre. This is why active transport mechanisms exist in cells and in the human body: without them, all the processes of life would happen at a pace that would make snails look speedy.

pf

link (url) [BibTex]

link (url) [BibTex]


no image
Automatically Rating Trainee Skill at a Pediatric Laparoscopic Suturing Task

Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.

Surgical Endoscopy, 32(4):1840-1857, April 2018 (article)

hi

DOI [BibTex]

DOI [BibTex]


Thumb xl animage2mask3
Assessing body image in anorexia nervosa using biometric self-avatars in virtual reality: Attitudinal components rather than visual body size estimation are distorted

Mölbert, S. C., Thaler, A., Mohler, B. J., Streuber, S., Romero, J., Black, M. J., Zipfel, S., Karnath, H., Giel, K. E.

Psychological Medicine, 48(4):642-653, March 2018 (article)

Abstract
Background: Body image disturbance (BID) is a core symptom of anorexia nervosa (AN), but as yet distinctive features of BID are unknown. The present study aimed at disentangling perceptual and attitudinal components of BID in AN. Methods: We investigated n=24 women with AN and n=24 controls. Based on a 3D body scan, we created realistic virtual 3D bodies (avatars) for each participant that were varied through a range of ±20% of the participants' weights. Avatars were presented in a virtual reality mirror scenario. Using different psychophysical tasks, participants identified and adjusted their actual and their desired body weight. To test for general perceptual biases in estimating body weight, a second experiment investigated perception of weight and shape matched avatars with another identity. Results: Women with AN and controls underestimated their weight, with a trend that women with AN underestimated more. The average desired body of controls had normal weight while the average desired weight of women with AN corresponded to extreme AN (DSM-5). Correlation analyses revealed that desired body weight, but not accuracy of weight estimation, was associated with eating disorder symptoms. In the second experiment, both groups estimated accurately while the most attractive body was similar to Experiment 1. Conclusions: Our results contradict the widespread assumption that patients with AN overestimate their body weight due to visual distortions. Rather, they illustrate that BID might be driven by distorted attitudes with regard to the desired body. Clinical interventions should aim at helping patients with AN to change their desired weight.

ps

doi pdf DOI Project Page [BibTex]


Thumb xl singh et al 2018 advanced functional materials
Photogravitactic Microswimmers

Singh, D. P., Uspal, W. E., Popescu, M. N., Wilson, L. G., Fischer, P.

Adv. Func. Mat., 28, pages: 1706660, Febuary 2018 (article)

Abstract
Abstract Phototactic microorganisms are commonly observed to respond to natural sunlight by swimming upward against gravity. This study demonstrates that synthetic photochemically active microswimmers can also swim against gravity. The particles initially sediment and, when illuminated at low light intensities exhibit wall‐bound states of motion near the bottom surface. Upon increasing the intensity of light, the artificial swimmers lift off from the wall and swim against gravity and away from the light source. This motion in the bulk has been further confirmed using holographic microscopy. A theoretical model is presented within the framework of self‐diffusiophoresis, which allows to unequivocally identify the photochemical activity and the phototactic response as key mechanisms in the observed phenomenology. Since the lift‐off threshold intensity depends on the particle size, it can be exploited to selectively address particles with the same density from a polydisperse mixture of active particles and move them in or out of the boundary region. This study provides a simple design strategy to fabricate artificial microswimmers whose two‐ or three‐dimensional swimming behavior can be controlled with light.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl matuschek et al 2018 small
Chiral Plasmonic Hydrogen Sensors

Matuschek, M., Singh, D. P., Hyeon-Ho, J., Nesterov, M., Weiss, T., Fischer, P., Neubrech, F., Na Liu, L.

Small, 14(7):1702990, Febuary 2018 (article)

Abstract
In this article, a chiral plasmonic hydrogen‐sensing platform using palladium‐based nanohelices is demonstrated. Such 3D chiral nanostructures fabricated by nanoglancing angle deposition exhibit strong circular dichroism both experimentally and theoretically. The chiroptical properties of the palladium nanohelices are altered upon hydrogen uptake and sensitively depend on the hydrogen concentration. Such properties are well suited for remote and spark‐free hydrogen sensing in the flammable range. Hysteresis is reduced, when an increasing amount of gold is utilized in the palladium‐gold hybrid helices. As a result, the linearity of the circular dichroism in response to hydrogen is significantly improved. The chiral plasmonic sensor scheme is of potential interest for hydrogen‐sensing applications, where good linearity and high sensitivity are required.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl plos1
Body size estimation of self and others in females varying in BMI

Thaler, A., Geuss, M. N., Mölbert, S. C., Giel, K. E., Streuber, S., Romero, J., Black, M. J., Mohler, B. J.

PLoS ONE, 13(2), Febuary 2018 (article)

Abstract
Previous literature suggests that a disturbed ability to accurately identify own body size may contribute to overweight. Here, we investigated the influence of personal body size, indexed by body mass index (BMI), on body size estimation in a non-clinical population of females varying in BMI. We attempted to disentangle general biases in body size estimates and attitudinal influences by manipulating whether participants believed the body stimuli (personalized avatars with realistic weight variations) represented their own body or that of another person. Our results show that the accuracy of own body size estimation is predicted by personal BMI, such that participants with lower BMI underestimated their body size and participants with higher BMI overestimated their body size. Further, participants with higher BMI were less likely to notice the same percentage of weight gain than participants with lower BMI. Importantly, these results were only apparent when participants were judging a virtual body that was their own identity (Experiment 1), but not when they estimated the size of a body with another identity and the same underlying body shape (Experiment 2a). The different influences of BMI on accuracy of body size estimation and sensitivity to weight change for self and other identity suggests that effects of BMI on visual body size estimation are self-specific and not generalizable to other bodies.

ps

pdf DOI Project Page [BibTex]


Thumb xl fig1b
Acoustic Fabrication via the Assembly and Fusion of Particles

Melde, K., Choi, E., Wu, Z., Palagi, S., Qiu, T., Fischer, P.

Advanced Materials, 30(3):1704507, January 2018 (article)

Abstract
Acoustic assembly promises a route toward rapid parallel fabrication of whole objects directly from solution. This study reports the contact-free and maskless assembly, and fixing of silicone particles into arbitrary 2D shapes using ultrasound fields. Ultrasound passes through an acoustic hologram to form a target image. The particles assemble from a suspension along lines of high pressure in the image due to acoustic radiation forces and are then fixed (crosslinked) in a UV-triggered reaction. For this, the particles are loaded with a photoinitiator by solvent-induced swelling. This localizes the reaction and allows the bulk suspension to be reused. The final fabricated parts are mechanically stable and self-supporting.

pf

link (url) DOI Project Page [BibTex]


no image
Distributed Event-Based State Estimation for Networked Systems: An LMI Approach

Muehlebach, M., Trimpe, S.

IEEE Transactions on Automatic Control, 63(1):269-276, January 2018 (article)

am ics

arXiv (extended version) DOI Project Page [BibTex]

arXiv (extended version) DOI Project Page [BibTex]


no image
Immersive Low-Cost Virtual Reality Treatment for Phantom Limb Pain: Evidence from Two Cases

Ambron, E., Miller, A., Kuchenbecker, K. J., Buxbaum, L. J., Coslett, H. B.

Frontiers in Neurology, 9(67):1-7, 2018 (article)

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl yanzhang clustering
Temporal Human Action Segmentation via Dynamic Clustering

Zhang, Y., Sun, H., Tang, S., Neumann, H.

arXiv preprint arXiv:1803.05790, 2018 (article)

Abstract
We present an effective dynamic clustering algorithm for the task of temporal human action segmentation, which has comprehensive applications such as robotics, motion analysis, and patient monitoring. Our proposed algorithm is unsupervised, fast, generic to process various types of features, and applica- ble in both the online and offline settings. We perform extensive experiments of processing data streams, and show that our algorithm achieves the state-of- the-art results for both online and offline settings.

ps

link (url) [BibTex]

link (url) [BibTex]


Thumb xl motion segmentation tracking clustering teaser
Motion Segmentation & Multiple Object Tracking by Correlation Co-Clustering

Keuper, M., Tang, S., Andres, B., Brox, T., Schiele, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018 (article)

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]

2017


Thumb xl fig1
Active colloidal propulsion over a crystalline surface

Choudhury, U., Straube, A., Fischer, P., Gibbs, J., Höfling, F.

New Journal of Physics, 19, pages: 125010, December 2017 (article)

Abstract
We study both experimentally and theoretically the dynamics of chemically self-propelled Janus colloids moving atop a two-dimensional crystalline surface. The surface is a hexagonally close-packed monolayer of colloidal particles of the same size as the mobile one. The dynamics of the self-propelled colloid reflects the competition between hindered diffusion due to the periodic surface and enhanced diffusion due to active motion. Which contribution dominates depends on the propulsion strength, which can be systematically tuned by changing the concentration of a chemical fuel. The mean-square displacements obtained from the experiment exhibit enhanced diffusion at long lag times. Our experimental data are consistent with a Langevin model for the effectively two-dimensional translational motion of an active Brownian particle in a periodic potential, combining the confining effects of gravity and the crystalline surface with the free rotational diffusion of the colloid. Approximate analytical predictions are made for the mean-square displacement describing the crossover from free Brownian motion at short times to active diffusion at long times. The results are in semi-quantitative agreement with numerical results of a refined Langevin model that treats translational and rotational degrees of freedom on the same footing.

pf

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]