Header logo is


2018


Softness, Warmth, and Responsiveness Improve Robot Hugs
Softness, Warmth, and Responsiveness Improve Robot Hugs

Block, A. E., Kuchenbecker, K. J.

International Journal of Social Robotics, 11(1):49-64, October 2018 (article)

Abstract
Hugs are one of the first forms of contact and affection humans experience. Due to their prevalence and health benefits, roboticists are naturally interested in having robots one day hug humans as seamlessly as humans hug other humans. This project's purpose is to evaluate human responses to different robot physical characteristics and hugging behaviors. Specifically, we aim to test the hypothesis that a soft, warm, touch-sensitive PR2 humanoid robot can provide humans with satisfying hugs by matching both their hugging pressure and their hugging duration. Thirty relatively young and rather technical participants experienced and evaluated twelve hugs with the robot, divided into three randomly ordered trials that focused on physical robot characteristics (single factor, three levels) and nine randomly ordered trials with low, medium, and high hug pressure and duration (two factors, three levels each). Analysis of the results showed that people significantly prefer soft, warm hugs over hard, cold hugs. Furthermore, users prefer hugs that physically squeeze them and release immediately when they are ready for the hug to end. Taking part in the experiment also significantly increased positive user opinions of robots and robot use.

hi

link (url) DOI Project Page [BibTex]

2018


link (url) DOI Project Page [BibTex]


no image
Multi-objective Optimization of Nonconventional Laminated Composite Panels

Serhat, G.

Koc University, October 2018 (phdthesis)

Abstract
Laminated composite panels are extensively used in various industries due to their high stiffness-to-weight ratio and directional properties that allow optimization of stiffness characteristics for specific applications. With the recent improvements in the manufacturing techniques, the technology trend has been shifting towards the development of nonconventional composites. This work aims to develop new methods for the design and optimization of nonconventional laminated composites. Lamination parameters method is used to characterize laminate stiffness matrices in a compact form. An optimization framework based on finite element analysis was developed to calculate the solutions for different panel geometries, boundary conditions and load cases. The first part of the work addresses the multi-objective optimization of composite laminates to maximize dynamic and load-carrying performances simultaneously. Conforming and conflicting behaviors of multiple objective functions are investigated by determining Pareto-optimal solutions, which provide a valuable insight for multi-objective optimization problems. In the second part, design of curved laminated panels for optimal dynamic response is studied in detail. Firstly, the designs yielding maximum fundamental frequency values are computed. Next, optimal designs minimizing equivalent radiated power are obtained for the panels under harmonic pressure excitation, and their effective frequency bands are shown. The relationship between these two design sets is investigated to study the effectiveness of the frequency maximization technique. In the last part, a new method based on lamination parameters is proposed for the design of variable-stiffness composite panels. The results demonstrate that the proposed method provides manufacturable designs with smooth fiber paths that outperform the constant-stiffness laminates, while utilizing the advantages of lamination parameters formulation.

hi

Multi-objective Optimization of Nonconventional Laminated Composite Panels DOI [BibTex]


no image
Complexity, Rate, and Scale in Sliding Friction Dynamics Between a Finger and Textured Surface

Khojasteh, B., Janko, M., Visell, Y.

Nature Scientific Reports, 8(13710), September 2018 (article)

Abstract
Sliding friction between the skin and a touched surface is highly complex, but lies at the heart of our ability to discriminate surface texture through touch. Prior research has elucidated neural mechanisms of tactile texture perception, but our understanding of the nonlinear dynamics of frictional sliding between the finger and textured surfaces, with which the neural signals that encode texture originate, is incomplete. To address this, we compared measurements from human fingertips sliding against textured counter surfaces with predictions of numerical simulations of a model finger that resembled a real finger, with similar geometry, tissue heterogeneity, hyperelasticity, and interfacial adhesion. Modeled and measured forces exhibited similar complex, nonlinear sliding friction dynamics, force fluctuations, and prominent regularities related to the surface geometry. We comparatively analysed measured and simulated forces patterns in matched conditions using linear and nonlinear methods, including recurrence analysis. The model had greatest predictive power for faster sliding and for surface textures with length scales greater than about one millimeter. This could be attributed to the the tendency of sliding at slower speeds, or on finer surfaces, to complexly engage fine features of skin or surface, such as fingerprints or surface asperities. The results elucidate the dynamical forces felt during tactile exploration and highlight the challenges involved in the biological perception of surface texture via touch.

hi

DOI [BibTex]

DOI [BibTex]


no image
Instrumentation, Data, and Algorithms for Visually Understanding Haptic Surface Properties

Burka, A. L.

University of Pennsylvania, Philadelphia, USA, August 2018, Department of Electrical and Systems Engineering (phdthesis)

Abstract
Autonomous robots need to efficiently walk over varied surfaces and grasp diverse objects. We hypothesize that the association between how such surfaces look and how they physically feel during contact can be learned from a database of matched haptic and visual data recorded from various end-effectors' interactions with hundreds of real-world surfaces. Testing this hypothesis required the creation of a new multimodal sensing apparatus, the collection of a large multimodal dataset, and development of a machine-learning pipeline. This thesis begins by describing the design and construction of the Portable Robotic Optical/Tactile ObservatioN PACKage (PROTONPACK, or Proton for short), an untethered handheld sensing device that emulates the capabilities of the human senses of vision and touch. Its sensory modalities include RGBD vision, egomotion, contact force, and contact vibration. Three interchangeable end-effectors (a steel tooling ball, an OptoForce three-axis force sensor, and a SynTouch BioTac artificial fingertip) allow for different material properties at the contact point and provide additional tactile data. We then detail the calibration process for the motion and force sensing systems, as well as several proof-of-concept surface discrimination experiments that demonstrate the reliability of the device and the utility of the data it collects. This thesis then presents a large-scale dataset of multimodal surface interaction recordings, including 357 unique surfaces such as furniture, fabrics, outdoor fixtures, and items from several private and public material sample collections. Each surface was touched with one, two, or three end-effectors, comprising approximately one minute per end-effector of tapping and dragging at various forces and speeds. We hope that the larger community of robotics researchers will find broad applications for the published dataset. Lastly, we demonstrate an algorithm that learns to estimate haptic surface properties given visual input. Surfaces were rated on hardness, roughness, stickiness, and temperature by the human experimenter and by a pool of purely visual observers. Then we trained an algorithm to perform the same task as well as infer quantitative properties calculated from the haptic data. Overall, the task of predicting haptic properties from vision alone proved difficult for both humans and computers, but a hybrid algorithm using a deep neural network and a support vector machine achieved a correlation between expected and actual regression output between approximately ρ = 0.3 and ρ = 0.5 on previously unseen surfaces.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Design of curved composite panels for optimal dynamic response using lamination parameters

Serhat, G., Basdogan, I.

Composites Part B: Engineering, 147, pages: 135–146, August 2018 (article)

Abstract
In this paper, dynamic response of composite panels is investigated using lamination parameters as design variables. Finite element analyses are performed to observe the individual and combined effects of different panel aspect ratios, curvatures and boundary conditions on the dynamic responses. Fundamental frequency contours for curved panels are obtained in lamination parameters domain and optimal points yielding maximum values are found. Subsequently, forced dynamic analyses are carried out to calculate equivalent radiated power (ERP) for the panels under harmonic pressure excitation. ERP contours at the maximum fundamental frequency are presented. Optimal lamination parameters providing minimum ERP are determined for different excitation frequencies and their effective frequency bands are shown. The relationship between the designs optimized for maximum fundamental frequency and minimum ERP responses is investigated to study the effectiveness of the frequency maximization technique. The results demonstrate the potential of using lamination parameters technique in the design of curved composite panels for optimal dynamic response and provide valuable insight on the effect of various design parameters.

hi

DOI [BibTex]

DOI [BibTex]


no image
A Robust Soft Lens for Tunable Camera Application Using Dielectric Elastomer Actuators

Nam, S., Yun, S., Yoon, J. W., Park, S., Park, S. K., Mun, S., Park, B., Kyung, K.

Soft robotics, Mary Ann Liebert, Inc., August 2018 (article)

Abstract
Developing tunable lenses, an expansion-based mechanism for dynamic focus adjustment can provide a larger focal length tuning range than a contraction-based mechanism. Here, we develop an expansion-tunable soft lens module using a disk-type dielectric elastomer actuator (DEA) that creates axially symmetric pulling forces on a soft lens. Adopted from a biological accommodation mechanism in human eyes, a soft lens at the annular center of a disk-type DEA pair is efficiently stretched to change the focal length in a highly reliable manner. A soft lens with a diameter of 3mm shows a 65.7% change in the focal length (14.3–23.7mm) under a dynamic driving voltage signal control. We confirm a quadratic relation between lens expansion and focal length that leads to large focal length tunability obtainable in the proposed approach. The fabricated tunable lens module can be used for soft, lightweight, and compact vision components in robots, drones, vehicles, and so on.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Robust Visual Augmented Reality in Robot-Assisted Surgery
Robust Visual Augmented Reality in Robot-Assisted Surgery

Forte, M. P.

Politecnico di Milano, Milan, Italy, July 2018, Department of Electronic, Information, and Biomedical Engineering (mastersthesis)

Abstract
The broader research objective of this line of research is to test the hypothesis that real-time stereo video analysis and augmented reality can increase safety and task efficiency in robot-assisted surgery. This master’s thesis aims to solve the first step needed to achieve this goal: the creation of a robust system that delivers the envisioned feedback to a surgeon while he or she controls a surgical robot that is identical to those used on human patients. Several approaches for applying augmented reality to da Vinci Surgical Systems have been proposed, but none of them entirely rely on a clinical robot; specifically, they require additional sensors, depend on access to the da Vinci API, are designed for a very specific task, or were tested on systems that are starkly different from those in clinical use. There has also been prior work that presents the real-world camera view and the computer graphics on separate screens, or not in real time. In other scenarios, the digital information is overlaid manually by the surgeons themselves or by computer scientists, rather than being generated automatically in response to the surgeon’s actions. We attempted to overcome the aforementioned constraints by acquiring input signals from the da Vinci stereo endoscope and providing augmented reality to the console in real time (less than 150 ms delay, including the 62 ms of inherent latency of the da Vinci). The potential benefits of the resulting system are broad because it was built to be general, rather than customized for any specific task. The entire platform is compatible with any generation of the da Vinci System and does not require a dVRK (da Vinci Research Kit) or access to the API. Thus, it can be applied to existing da Vinci Systems in operating rooms around the world.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Task-Driven PCA-Based Design Optimization of Wearable Cutaneous Devices

Pacchierotti, C., Young, E. M., Kuchenbecker, K. J.

IEEE Robotics and Automation Letters, 3(3):2214-2221, July 2018, Presented at ICRA 2018 (article)

Abstract
Small size and low weight are critical requirements for wearable and portable haptic interfaces, making it essential to work toward the optimization of their sensing and actuation systems. This paper presents a new approach for task-driven design optimization of fingertip cutaneous haptic devices. Given one (or more) target tactile interactions to render and a cutaneous device to optimize, we evaluate the minimum number and best configuration of the device’s actuators to minimize the estimated haptic rendering error. First, we calculate the motion needed for the original cutaneous device to render the considered target interaction. Then, we run a principal component analysis (PCA) to search for possible couplings between the original motor inputs, looking also for the best way to reconfigure them. If some couplings exist, we can re-design our cutaneous device with fewer motors, optimally configured to render the target tactile sensation. The proposed approach is quite general and can be applied to different tactile sensors and cutaneous devices. We validated it using a BioTac tactile sensor and custom plate-based 3-DoF and 6-DoF fingertip cutaneous devices, considering six representative target tactile interactions. The algorithm was able to find couplings between each device’s motor inputs, proving it to be a viable approach to optimize the design of wearable and portable cutaneous devices. Finally, we present two examples of optimized designs for our 3-DoF fingertip cutaneous device.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn {IMU}s
Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn IMUs

Fitter, N. T., Kuchenbecker, K. J.

Frontiers in Robotics and Artificial Intelligence, 5(85), July 2018 (article)

Abstract
Colleagues often shake hands in greeting, friends connect through high fives, and children around the world rejoice in hand-clapping games. As robots become more common in everyday human life, they will have the opportunity to join in these social-physical interactions, but few current robots are intended to touch people in friendly ways. This article describes how we enabled a Baxter Research Robot to both teach and learn bimanual hand-clapping games with a human partner. Our system monitors the user's motions via a pair of inertial measurement units (IMUs) worn on the wrists. We recorded a labeled library of 10 common hand-clapping movements from 10 participants; this dataset was used to train an SVM classifier to automatically identify hand-clapping motions from previously unseen participants with a test-set classification accuracy of 97.0%. Baxter uses these sensors and this classifier to quickly identify the motions of its human gameplay partner, so that it can join in hand-clapping games. This system was evaluated by N = 24 naïve users in an experiment that involved learning sequences of eight motions from Baxter, teaching Baxter eight-motion game patterns, and completing a free interaction period. The motion classification accuracy in this less structured setting was 85.9%, primarily due to unexpected variations in motion timing. The quantitative task performance results and qualitative participant survey responses showed that learning games from Baxter was significantly easier than teaching games to Baxter, and that the teaching role caused users to consider more teamwork aspects of the gameplay. Over the course of the experiment, people felt more understood by Baxter and became more willing to follow the example of the robot. Users felt uniformly safe interacting with Baxter, and they expressed positive opinions of Baxter and reported fun interacting with the robot. Taken together, the results indicate that this robot achieved credible social-physical interaction with humans and that its ability to both lead and follow systematically changed the human partner's experience.

hi

DOI [BibTex]

DOI [BibTex]


Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs
Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs

Sproewitz, A., Tuleu, A., Ajallooeian, M., Vespignani, M., Moeckel, R., Eckert, P., D’Haene, M., Degrave, J., Nordmann, A., Schrauwen, B., Steil, J., Ijspeert, A. J.

Frontiers in Robotics and AI, 5(67), June 2018, arXiv: 1803.06259 (article)

Abstract
We present Oncilla robot, a novel mobile, quadruped legged locomotion machine. This large-cat sized, 5.1 robot is one of a kind of a recent, bioinspired legged robot class designed with the capability of model-free locomotion control. Animal legged locomotion in rough terrain is clearly shaped by sensor feedback systems. Results with Oncilla robot show that agile and versatile locomotion is possible without sensory signals to some extend, and tracking becomes robust when feedback control is added (Ajaoolleian 2015). By incorporating mechanical and control blueprints inspired from animals, and by observing the resulting robot locomotion characteristics, we aim to understand the contribution of individual components. Legged robots have a wide mechanical and control design parameter space, and a unique potential as research tools to investigate principles of biomechanics and legged locomotion control. But the hardware and controller design can be a steep initial hurdle for academic research. To facilitate the easy start and development of legged robots, Oncilla-robot's blueprints are available through open-source. [...]

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Learning from Outside the Viability Kernel: Why we Should Build Robots that can Fail with Grace
Learning from Outside the Viability Kernel: Why we Should Build Robots that can Fail with Grace

Heim, S., Sproewitz, A.

Proceedings of SIMPAR 2018, pages: 55-61, IEEE, 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), May 2018 (conference)

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware
Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware

Heim, S., Ruppert, F., Sarvestani, A., Sproewitz, A.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, pages: 5076-5081, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

Abstract
Learning instead of designing robot controllers can greatly reduce engineering effort required, while also emphasizing robustness. Despite considerable progress in simulation, applying learning directly in hardware is still challenging, in part due to the necessity to explore potentially unstable parameters. We explore the of concept shaping the reward landscape with training wheels; temporary modifications of the physical hardware that facilitate learning. We demonstrate the concept with a robot leg mounted on a boom learning to hop fast. This proof of concept embodies typical challenges such as instability and contact, while being simple enough to empirically map out and visualize the reward landscape. Based on our results we propose three criteria for designing effective training wheels for learning in robotics.

dlg

Video Youtube link (url) Project Page [BibTex]

Video Youtube link (url) Project Page [BibTex]


no image
Automatically Rating Trainee Skill at a Pediatric Laparoscopic Suturing Task

Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.

Surgical Endoscopy, 32(4):1840-1857, April 2018 (article)

hi

DOI [BibTex]

DOI [BibTex]


no image
Electroelastic modeling of thin-laminated composite plates with surface-bonded piezo-patches using Rayleigh–Ritz method

Gozum, M. M., Aghakhani, A., Serhat, G., Basdogan, I.

Journal of Intelligent Material Systems and Structures, 29(10):2192–2205, March 2018 (article)

Abstract
Laminated composite panels are extensively used in various engineering applications. Piezoelectric transducers can be integrated into such composite structures for a variety of vibration control and energy harvesting applications. Analyzing the structural dynamics of such electromechanical systems requires precise modeling tools which properly consider the coupling between the piezoelectric elements and the laminates. Although previous analytical models in the literature cover vibration analysis of laminated composite plates with fully covered piezoelectric layers, they do not provide a formulation for modeling the piezoelectric patches that partially cover the plate surface. In this study, a methodology for vibration analysis of laminated composite plates with surface-bonded piezo-patches is developed. Rayleigh–Ritz method is used for solving the modal analysis and obtaining the frequency response functions. The developed model includes mass and stiffness contribution of the piezo-patches as well as the two-way electromechanical coupling effect. Moreover, an accelerated method is developed for reducing the computation time of the modal analysis solution. For validations, system-level finite element simulations are performed in ANSYS software. The results show that the developed analytical model can be utilized for accurate and efficient analysis and design of laminated composite plates with surface-bonded piezo-patches.

pi hi

DOI [BibTex]

DOI [BibTex]


Electro-Active Polymer Based Soft Tactile Interface for Wearable Devices
Electro-Active Polymer Based Soft Tactile Interface for Wearable Devices

Mun, S., Yun, S., Nam, S., Park, S. K., Park, S., Park, B. J., Lim, J. M., Kyung, K. U.

IEEE Transactions on Haptics, 11(1):15-21, Febuary 2018 (article)

Abstract
This paper reports soft actuator based tactile stimulation interfaces applicable to wearable devices. The soft actuator is prepared by multi-layered accumulation of thin electro-active polymer (EAP) films. The multi-layered actuator is designed to produce electrically-induced convex protrusive deformation, which can be dynamically programmable for wide range of tactile stimuli. The maximum vertical protrusion is 650 μm and the output force is up to 255 mN. The soft actuators are embedded into the fingertip part of a glove and front part of a forearm band, respectively. We have conducted two kinds of experiments with 15 subjects. Perceived magnitudes of actuator's protrusion and vibrotactile intensity were measured with frequency of 1 Hz and 191 Hz, respectively. Analysis of the user tests shows participants perceive variation of protrusion height at the finger pad and modulation of vibration intensity through the proposed soft actuator based tactile interface.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Robotic Motion Learning Framework to Promote Social Engagement
Robotic Motion Learning Framework to Promote Social Engagement

Burns, R., Jeon, M., Park, C. H.

Applied Sciences, 8(2):241, Febuary 2018, Special Issue "Social Robotics" (article)

Abstract
Imitation is a powerful component of communication between people, and it poses an important implication in improving the quality of interaction in the field of human–robot interaction (HRI). This paper discusses a novel framework designed to improve human–robot interaction through robotic imitation of a participant’s gestures. In our experiment, a humanoid robotic agent socializes with and plays games with a participant. For the experimental group, the robot additionally imitates one of the participant’s novel gestures during a play session. We hypothesize that the robot’s use of imitation will increase the participant’s openness towards engaging with the robot. Experimental results from a user study of 12 subjects show that post-imitation, experimental subjects displayed a more positive emotional state, had higher instances of mood contagion towards the robot, and interpreted the robot to have a higher level of autonomy than their control group counterparts did. These results point to an increased participant interest in engagement fueled by personalized imitation during interaction.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Travelling Ultrasonic Wave Enhances Keyclick Sensation

Gueorguiev, D., Kaci, A., Amberg, M., Giraud, F., Lemaire-Semail, B.

In Haptics: Science, Technology, and Applications, pages: 302-312, Springer International Publishing, Cham, 2018 (inproceedings)

Abstract
A realistic keyclick sensation is a serious challenge for haptic feedback since vibrotactile rendering faces the limitation of the absence of contact force as experienced on physical buttons. It has been shown that creating a keyclick sensation is possible with stepwise ultrasonic friction modulation. However, the intensity of the sensation is limited by the impedance of the fingertip and by the absence of a lateral force component external to the finger. In our study, we compare this technique to rendering with an ultrasonic travelling wave, which exerts a lateral force on the fingertip. For both techniques, participants were asked to report the detection (or not) of a keyclick during a forced choice one interval procedure. In experiment 1, participants could press the surface as many time as they wanted for a given trial. In experiment 2, they were constrained to press only once. The results show a lower perceptual threshold for travelling waves. Moreover, participants pressed less times per trial and exerted smaller normal force on the surface. The subjective quality of the sensation was found similar for both techniques. In general, haptic feedback based on travelling ultrasonic waves is promising for applications without lateral motion of the finger.

hi

[BibTex]

[BibTex]


no image
Immersive Low-Cost Virtual Reality Treatment for Phantom Limb Pain: Evidence from Two Cases

Ambron, E., Miller, A., Kuchenbecker, K. J., Buxbaum, L. J., Coslett, H. B.

Frontiers in Neurology, 9(67):1-7, 2018 (article)

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Exploring Fingers’ Limitation of Texture Density Perception on Ultrasonic Haptic Displays

Kalantari, F., Gueorguiev, D., Lank, E., Bremard, N., Grisoni, L.

In Haptics: Science, Technology, and Applications, pages: 354-365, Springer International Publishing, Cham, 2018 (inproceedings)

Abstract
Recent research in haptic feedback is motivated by the crucial role that tactile perception plays in everyday touch interactions. In this paper, we describe psychophysical experiments to investigate the perceptual threshold of individual fingers on both the right and left hand of right-handed participants using active dynamic touch for spatial period discrimination of both sinusoidal and square-wave gratings on ultrasonic haptic touchscreens. Both one-finger and multi-finger touch were studied and compared. Our results indicate that users' finger identity (index finger, middle finger, etc.) significantly affect the perception of both gratings in the case of one-finger exploration. We show that index finger and thumb are the most sensitive in all conditions whereas little finger followed by ring are the least sensitive for haptic perception. For multi-finger exploration, the right hand was found to be more sensitive than the left hand for both gratings. Our findings also demonstrate similar perception sensitivity between multi-finger exploration and the index finger of users' right hands (i.e. dominant hand in our study), while significant difference was found between single and multi-finger perception sensitivity for the left hand.

hi

[BibTex]

[BibTex]


Tactile perception by electrovibration
Tactile perception by electrovibration

Vardar, Y.

Koc University, 2018 (phdthesis)

Abstract
One approach to generating realistic haptic feedback on touch screens is electrovibration. In this technique, the friction force is altered via electrostatic forces, which are generated by applying an alternating voltage signal to the conductive layer of a capacitive touchscreen. Although the technology for rendering haptic effects on touch surfaces using electrovibration is already in place, our knowledge of the perception mechanisms behind these effects is limited. This thesis aims to explore the mechanisms underlying haptic perception of electrovibration in two parts. In the first part, the effect of input signal properties on electrovibration perception is investigated. Our findings indicate that the perception of electrovibration stimuli depends on frequency-dependent electrical properties of human skin and human tactile sensitivity. When a voltage signal is applied to a touchscreen, it is filtered electrically by human finger and it generates electrostatic forces in the skin and mechanoreceptors. Depending on the spectral energy content of this electrostatic force signal, different psychophysical channels may be activated. The channel which mediates the detection is determined by the frequency component which has a higher energy than the sensory threshold at that frequency. In the second part, effect of masking on the electrovibration perception is investigated. We show that the detection thresholds are elevated as linear functions of masking levels for simultaneous and pedestal masking. The masking effectiveness is larger for pedestal masking compared to simultaneous masking. Moreover, our results suggest that sharpness perception depends on the local contrast between background and foreground stimuli, which varies as a function of masking amplitude and activation levels of frequency-dependent psychophysical channels.

hi

Tactile perception by electrovibration [BibTex]


Tactile Masking by Electrovibration
Tactile Masking by Electrovibration

Vardar, Y., Güçlü, B., Basdogan, C.

IEEE Transactions on Haptics, 11(4):623-635, 2018 (article)

Abstract
Future touch screen applications will include multiple tactile stimuli displayed simultaneously or consecutively to single finger or multiple fingers. These applications should be designed by considering human tactile masking mechanism since it is known that presenting one stimulus may interfere with the perception of the other. In this study, we investigate the effect of masking on tactile perception of electrovibration displayed on touch screens. Through conducting psychophysical experiments with nine subjects, we measured the masked thresholds of sinusoidal electrovibration bursts (125 Hz) under two masking conditions: simultaneous and pedestal. The masking stimuli were noise bursts, applied at five different sensation levels varying from 2 to 22 dB SL, also presented by electrovibration. For each subject, the detection thresholds were elevated as linear functions of masking levels for both masking types. We observed that the masking effectiveness was larger with pedestal masking than simultaneous masking. Moreover, in order to investigate the effect of tactile masking on our haptic perception of edge sharpness, we compared the perceived sharpness of edges separating two textured regions displayed with and without various masking stimuli. Our results suggest that sharpness perception depends on the local contrast between background and foreground stimuli, which varies as a function of masking amplitude and activation levels of frequency-dependent psychophysical channels.

hi

vardar_toh2018 DOI [BibTex]

vardar_toh2018 DOI [BibTex]

2010


no image
Lack of Discriminatory Function for Endoscopy Skills on a Computer-based Simulator

Kim, S., Spencer, G., Makar, G., Ahmad, N., Jaffe, D., Ginsberg, G., Kuchenbecker, K. J., Kochman, M.

Surgical Endoscopy, 24(12):3008-3015, December 2010 (article)

hi

[BibTex]

2010


[BibTex]


no image
VerroTouch: High-Frequency Acceleration Feedback for Telerobotic Surgery

Kuchenbecker, K. J., Gewirtz, J., McMahan, W., Standish, D., Martin, P., Bohren, J., Mendoza, P. J., Lee, D. I.

In Haptics: Generating and Perceiving Tangible Sensations, Proc. EuroHaptics, Part I, 6191, pages: 189-196, Lecture Notes in Computer Science, Springer, Amsterdam, Netherlands, July 2010, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Identifying the Role of Proprioception in Upper-Limb Prosthesis Control: Studies on Targeted Motion

Blank, A., Okamura, A. M., Kuchenbecker, K. J.

ACM Transactions on Applied Perception, 7(3):1-23, June 2010 (article)

hi

[BibTex]

[BibTex]


no image
Automatic Filter Design for Synthesis of Haptic Textures from Recorded Acceleration Data

Romano, J. M., Yoshioka, T., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Robotics and Automation, pages: 1815-1821, Anchorage, Alaska, USA, May 2010, Oral presentation given by Romano (inproceedings)

hi

[BibTex]

[BibTex]


no image
Control of a High Fidelity Ungrounded Torque Feedback Device: The iTorqU 2.1

Winfree, K. N., Romano, J. M., Gewirtz, J., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Robotics and Automation, pages: 1347-1352, Anchorage, Alaska, May 2010, Oral presentation given by Winfree (inproceedings)

hi

[BibTex]

[BibTex]


no image
High Frequency Acceleration Feedback Significantly Increases the Realism of Haptically Rendered Textured Surfaces

McMahan, W., Romano, J. M., Rahuman, A. M. A., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 141-148, Waltham, Massachusetts, March 2010, Oral presentation given by McMahan (inproceedings)

hi

[BibTex]

[BibTex]


no image
Spatially distributed tactile feedback for kinesthetic motion guidance

Kapur, P., Jensen, M., Buxbaum, L. J., Jax, S. A., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 519-526, Waltham, Massachusetts, USA, March 2010, Poster presentation given by Kapur. {F}inalist for Best Poster Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Dimensional Reduction of High-Frequency Accelerations for Haptic Rendering

Landin, N., Romano, J. M., McMahan, W., Kuchenbecker, K. J.

In Haptics: Generating and Perceiving Tangible Sensations: Part II (Proceedings of EuroHaptics), 6192, pages: 79-86, Lecture Notes in Computer Science, Springer, Amsterdam, Netherlands, 2010, Poster presentation given by Landin (inproceedings)

hi

[BibTex]

[BibTex]


Graph signature for self-reconfiguration planning of modules with symmetry
Graph signature for self-reconfiguration planning of modules with symmetry

Asadpour, M., Ashtiani, M. H. Z., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 5295-5300, IEEE, St. Louis, MO, 2010 (inproceedings)

Abstract
In our previous works we had developed a framework for self-reconfiguration planning based on graph signature and graph edit-distance. The graph signature is a fast isomorphism test between different configurations and the graph edit-distance is a similarity metric. But the algorithm is not suitable for modules with symmetry. In this paper we improve the algorithm in order to deal with symmetric modules. Also, we present a new heuristic function to guide the search strategy by penalizing the solutions with more number of actions. The simulation results show the new algorithm not only deals with symmetric modules successfully but also finds better solutions in a shorter time.

dlg

DOI [BibTex]

DOI [BibTex]


no image
VerroTouch: A Vibrotactile Feedback System for Minimally Invasive Robotic Surgery

Kuchenbecker, K. J., Gewirtz, J., McMahan, W., Standish, D., Bohren, J., Martin, P., Wedmid, A., Mendoza, P. J., Lee, D. I.

In Proc. 28th World Congress of Endourology, 2010, PS8-14. Poster presentation given by Wedmid (inproceedings)

hi

[BibTex]

[BibTex]


Roombots - Towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules
Roombots - Towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules

Spröwitz, A., Laprade, P., Bonardi, S., Mayer, M., Moeckel, R., Mudry, P., Ijspeert, A. J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1126-1132, IEEE, Taipeh, 2010 (inproceedings)

Abstract
This paper presents our work towards a decentralized reconfiguration strategy for self-reconfiguring modular robots, assembling furniture-like structures from Roombots (RB) metamodules. We explore how reconfiguration by loco- motion from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using Roombots metamodules—two Roombots modules connected serially—that use broadcast signals, lookup tables of their movement space, assumptions about their neighborhood, and connections to a structured surface to collectively build desired structures without the need of a centralized planner.

dlg

DOI [BibTex]

DOI [BibTex]


Roombots: Reconfigurable Robots for Adaptive Furniture
Roombots: Reconfigurable Robots for Adaptive Furniture

Spröwitz, A., Pouya, S., Bonardi, S., van den Kieboom, J., Möckel, R., Billard, A., Dillenbourg, P., Ijspeert, A.

Computational Intelligence Magazine, IEEE, 5(3):20-32, 2010 (article)

Abstract
Imagine a world in which our furniture moves around like legged robots, interacts with us, and changes shape and function during the day according to our needs. This is the long term vision we have in the Roombots project. To work towards this dream, we are developing modular robotic modules that have rotational degrees of freedom for locomotion as well as active connection mechanisms for runtime reconfiguration. A piece of furniture, e.g. a stool, will thus be composed of several modules that activate their rotational joints together to implement locomotor gaits, and will be able to change shape, e.g. transforming into a chair, by sequences of attachments and detachments of modules. In this article, we firstly present the project and the hardware we are currently developing. We explore how reconfiguration from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using metamodules-two Roombots modules connected serially-that use broadcast signals and connections to a structured ground to collectively build desired structures without the need of a centralized planner. We then present how locomotion controllers can be implemented in a distributed system of coupled oscillators-one per degree of freedom-similarly to the concept of central pattern generators (CPGs) found in the spinal cord of vertebrate animals. The CPGs are based on coupled phase oscillators to ensure synchronized behavior and have different output filters to allow switching between oscillations and rotations. A stochastic optimization algorithm is used to explore optimal CPG configurations for different simulated Roombots structures.

dlg

DOI [BibTex]

DOI [BibTex]


Automatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the question
Automatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the question

Pouya, S., van den Kieboom, J., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 514-520, IEEE, Taipei, 2010 (inproceedings)

Abstract
Modular robots offer the possibility to design robots with a high diversity of shapes and functionalities. This nice feature also brings an important challenge: namely how to design efficient locomotion gaits for arbitrary robot structures with many degrees of freedom. In this paper, we present a framework that allows one to explore and identify highly different gaits for a given arbitrary- shaped modular robot. We use simulated robots made of several Roombots modules that have three rotational joints each. These modules have the interesting feature that they can produce both oscillatory movements (i.e. periodic movements around a rest position) and rotational movements (i.e. with continuously increasing angle), leading to very rich locomotion patterns. Here we ask ourselves which types of movements —purely oscillatory, purely rotational, or a combination of both— lead to the fastest gaits. To address this question we designed a control architecture based on a distributed system of coupled phase oscillators that can produce synchronized rotations and oscillations in many degrees of freedom. We also designed a specific optimization algorithm that can automatically design hybrid controllers, i.e. controllers that use oscillations in some joints and rotations in others, for fast gaits. The proposed framework is verified by multiple simulations for several robot morphologies. The results show that (i) the question whether it is better to oscillate or to rotate depends on the morphology of the robot, and that in general it is best to do both, (ii) the optimization framework can successfully generate hybrid controllers that outperform purely oscillatory and purely rotational ones, and (iii) the resulting gaits are fast, innovative, and would have been hard to design by hand.

dlg

DOI [BibTex]

DOI [BibTex]


Roombots: Design and Implementation of a Modular Robot for Reconfiguration and Locomotion
Roombots: Design and Implementation of a Modular Robot for Reconfiguration and Locomotion

Spröwitz, A.

EPFL, Lausanne, Lausanne, 2010 (phdthesis)

dlg

DOI [BibTex]

2007


no image
The power of external mentors for women pursuing academic careers in engineering and science: Stories of MentorNet ACE and its Proteges and Mentors

Muller, C. B., Smith, E. H. B., Chou-Green, J., Daniels-Race, T., Drummond, A., Kuchenbecker, K. J.

In Proc. Women in Engineering Programs and Advocates Network (WEPAN) National Conference, Lake Buena Vista, Florida, USA, June 2007, Oral presentation given by Muller (inproceedings)

hi

[BibTex]

2007


[BibTex]


no image
Effects of Visual and Proprioceptive Position Feedback on Human Control of Targeted Movement

Kuchenbecker, K. J., Gurari, N., Okamura, A. M.

In Proc. IEEE International Conference on Rehabilitation Robotics, pages: 513-524, Noordwijk, Netherlands, June 2007, Oral and poster presentations given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Quantifying the value of visual and haptic position feedback in force-based motion control

Kuchenbecker, K. J., Gurari, N., Okamura, A. M.

In Proc. IEEE World Haptics Conference, pages: 561-562, Tsukuba, Japan, March 2007, Poster presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Shaping event-based haptic transients via an improved understanding of real contact dynamics

Fiene, J. P., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 170-175, Tsukuba, Japan, March 2007, Oral presentation given by Fiene. {B}est Haptic Technology Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


An easy to use bluetooth scatternet protocol for fast data exchange in wireless sensor networks and autonomous robots
An easy to use bluetooth scatternet protocol for fast data exchange in wireless sensor networks and autonomous robots

Mockel, R., Spröwitz, A., Maye, J., Ijspeert, A. J.

In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 2801-2806, IEEE, San Diego, CA, 2007 (inproceedings)

Abstract
We present a Bluetooth scatternet protocol (SNP) that provides the user with a serial link to all connected members in a transparent wireless Bluetooth network. By using only local decision making we can reduce the overhead of our scatternet protocol dramatically. We show how our SNP software layer simplifies a variety of tasks like the synchronization of central pattern generator controllers for actuators, collecting sensory data and building modular robot structures. The whole Bluetooth software stack including our new scatternet layer is implemented on a single Bluetooth and memory chip. To verify and characterize the SNP we provide data from experiments using real hardware instead of software simulation. This gives a realistic overview of the scatternet performance showing higher order effects that are difficult to be simulated correctly and guaranties the correct function of the SNP in real world applications.

dlg

DOI [BibTex]

DOI [BibTex]

2005


no image
Perception of Curvature and Object Motion Via Contact Location Feedback

Provancher, W. R., Kuchenbecker, K. J., Niemeyer, G., Cutkosky, M. R.

In Proceedings of the International Symposium on Robotics Research (ISRR), 15, pages: 456-465, Springer Tracts in Advanced Robotics, Springer, Siena, Italy, 2005, Oral presentation given by Provancher in October of 2003 (inproceedings)

hi

[BibTex]

2005


[BibTex]


no image
Contact Location Display for Haptic Perception of Curvature and Object Motion

Provancher, W. R., Cutkosky, M. R., Kuchenbecker, K. J., Niemeyer, G.

International Journal of Robotics Research, 24(9):691-702, sep 2005 (article)

hi

[BibTex]

[BibTex]


no image
Modeling Induced Master Motion in Force-Reflecting Teleoperation

Kuchenbecker, K. J., Niemeyer, G.

In Proc. IEEE International Conference on Robotics and Automation, pages: 348-353, Barcelona, Spain, April 2005, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Event-Based Haptics and Acceleration Matching: Portraying and Assessing the Realism of Contact

Kuchenbecker, K. J., Fiene, J. P., Niemeyer, G.

In Proc. IEEE World Haptics Conference, pages: 381-387, Pisa, Italy, March 2005, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


Adaptation of Central Pattern Generators to Preexisting Mechanical Structure
Adaptation of Central Pattern Generators to Preexisting Mechanical Structure

Spröwitz, A.

Technische Universität Ilmenau, Ilmenau, 2005 (mastersthesis)

dlg

[BibTex]

[BibTex]

2004


no image
Canceling Induced Master Motion in Force-Reflecting Teleoperation

Kuchenbecker, K. J., Niemeyer, G.

In Proc. ASME International Mechanical Engineering Congress and Exposition, Symposium on Advances in Robot Dynamics and Control, 2, paper number 60049, Anaheim, California, USA, November 2004, Oral presentation given by Kuchenbecker. {B}est Student Paper Award (inproceedings)

hi

[BibTex]

2004


[BibTex]


no image
Haptic Display of Contact Location

Kuchenbecker, K. J., Provancher, W. R., Niemeyer, G., Cutkosky, M. R.

In Proc. IEEE Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages: 40-47, Chicago, Illinois, USA, March 2004, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
THUMP: An Immersive Haptic Console for Surgical Simulation and Training

Niemeyer, G., Kuchenbecker, K. J., Bonneau, R., Mitra, P., Reid, A., Fiene, J., Weldon, G.

In Proc. Medicine Meets Virtual Reality, pages: 272-274, Newport Beach, California, USA, January 2004, Poster presentation given by Niemeyer. {B}est Poster Award (inproceedings)

hi

[BibTex]

[BibTex]


Simple and low-cost compliant leg-foot system
Simple and low-cost compliant leg-foot system

Meyer, F., Spröwitz, A., Lungarella, M., Berthouze, L.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), 1, pages: 515-520, IEEE, Sendai, Japan, 2004 (inproceedings)

Abstract
We present the design of a simple and low- cost humanoid leg-foot system featuring compliant joints and springy feet. The mechanical compliance of the individual joints can be adjusted by means of visco-elastic material, or metal. To explore some of the relevant characteristics of the proposed system, we performed a series of experiments in which the leg was dropped from a fixed height. Combinations of different materials in the joints (silicone rubber, latex, and brass) as well as a rigid or a compliant foot were used. Additional data were obtained through of a Lagrangian analysis of the leg-foot system. Our analyses show that compliant joints not only reduce impactive forces, but also induce smoother joint trajectories. Further, by employing a compliant foot, a higher energy efficiency for the movement is achieved.

dlg

DOI [BibTex]

DOI [BibTex]