Header logo is


Impact of Trunk Orientation  for Dynamic Bipedal Locomotion
Impact of Trunk Orientation for Dynamic Bipedal Locomotion

Drama, Ö.

Dynamic Walking Conference, May 2018 (talk)

Impact of trunk orientation for dynamic bipedal locomotion My research revolves around investigating the functional demands of bipedal running, with focus on stabilizing trunk orientation. When we think about postural stability, there are two critical questions we need to answer: What are the necessary and sufficient conditions to achieve and maintain trunk stability? I am concentrating on how morphology affects control strategies in achieving trunk stability. In particular, I denote the trunk pitch as the predominant morphology parameter and explore the requirements it imposes on a chosen control strategy. To analyze this, I use a spring loaded inverted pendulum model extended with a rigid trunk, which is actuated by a hip motor. The challenge for the controller design here is to have a single hip actuator to achieve two coupled tasks of moving the legs to generate motion and stabilizing the trunk. I enforce orthograde and pronograde postures and aim to identify the effect of these trunk orientations on the hip torque and ground reaction profiles for different control strategies.


Impact of trunk orientation for dynamic bipedal locomotion [DW 2018] link (url) Project Page [BibTex]

no image
Nanorobots propel through the eye

Wu, Z., Troll, J., Jeong, H., Qiang, W., Stang, M., Ziemssen, F., Wang, Z., Dong, M., Schnichels, S., Qiu, T., Fischer, P.

Max Planck Society, 2018 (mpi_year_book)

Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart developed specially coated nanometer-sized robots that could be moved actively through dense tissue like the vitreous of the eye. So far, the transport of such nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. Our work constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.


link (url) [BibTex]

link (url) [BibTex]