Header logo is


2020


Walking Control Based on Step Timing Adaptation
Walking Control Based on Step Timing Adaptation

Khadiv, M., Herzog, A., Moosavian, S. A. A., Righetti, L.

IEEE Transactions on Robotics, 36, pages: 629 - 643, IEEE, June 2020 (article)

Abstract
Step adjustment can improve the gait robustness of biped robots; however, the adaptation of step timing is often neglected as it gives rise to nonconvex problems when optimized over several footsteps. In this article, we argue that it is not necessary to optimize walking over several steps to ensure gait viability and show that it is sufficient to merely select the next step timing and location. Using this insight, we propose a novel walking pattern generator that optimally selects step location and timing at every control cycle. Our approach is computationally simple compared to standard approaches in the literature, yet guarantees that any viable state will remain viable in the future. We propose a swing foot adaptation strategy and integrate the pattern generator with an inverse dynamics controller that does not explicitly control the center of mass nor the foot center of pressure. This is particularly useful for biped robots with limited control authority over their foot center of pressure, such as robots with point feet or passive ankles. Extensive simulations on a humanoid robot with passive ankles demonstrate the capabilities of the approach in various walking situations, including external pushes and foot slippage, and emphasize the importance of step timing adaptation to stabilize walking.

mg

link (url) DOI [BibTex]

2020


link (url) DOI [BibTex]


Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots
Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots

Drama, Ö., Badri-Spröwitz, A.

Bioinspiration & Biomimetics, 15(3), March 2020 (article)

Abstract
Bipedal animals have diverse morphologies and advanced locomotion abilities. Terrestrial birds, in particular, display agile, efficient, and robust running motion, in which they exploit the interplay between the body segment masses and moment of inertias. On the other hand, most legged robots are not able to generate such versatile and energy-efficient motion and often disregard trunk movements as a means to enhance their locomotion capabilities. Recent research investigated how trunk motions affect the gait characteristics of humans, but there is a lack of analysis across different bipedal morphologies. To address this issue, we analyze avian running based on a spring-loaded inverted pendulum model with a pronograde (horizontal) trunk. We use a virtual point based control scheme and modify the alignment of the ground reaction forces to assess how our control strategy influences the trunk pitch oscillations and energetics of the locomotion. We derive three potential key strategies to leverage trunk pitch motions that minimize either the energy fluctuations of the center of mass or the work performed by the hip and leg. We suggest how these strategies could be used in legged robotics.

dlg

Youtube Video link (url) DOI [BibTex]

Youtube Video link (url) DOI [BibTex]


Effective Viscous Damping Enables Morphological Computation in Legged Locomotion
Effective Viscous Damping Enables Morphological Computation in Legged Locomotion

Mo, A., Izzi, F., Haeufle, D. F. B., Badri-Spröwitz, A.

2020 (article) In revision

Abstract
Muscle models and animal observations suggest that physical damping is beneficial for stabilization. Still, only a few implementations of mechanical damping exist in compliant robotic legged locomotion. It remains unclear how physical damping can be exploited for locomotion tasks, while its advantages as sensor-free, adaptive force- and negative work-producing actuators are promising. In a simplified numerical leg model, we studied the energy dissipation from viscous and Coulomb damping during vertical drops with ground-level perturbations. A parallel spring-damper is engaged between touch-down and mid-stance, and its damper auto-disengages during mid-stance and takeoff. Our simulations indicate that an adjustable and viscous damper is desired. In hardware we explored effective viscous damping and adjustability and quantified the dissipated energy. We tested two mechanical, leg-mounted damping mechanisms; a commercial hydraulic damper, and a custom-made pneumatic damper. The pneumatic damper exploits a rolling diaphragm with an adjustable orifice, minimizing Coulomb damping effects while permitting adjustable resistance. Experimental results show that the leg-mounted, hydraulic damper exhibits the most effective viscous damping. Adjusting the orifice setting did not result in substantial changes of dissipated energy per drop, unlike adjusting damping parameters in the numerical model. Consequently, we also emphasize the importance of characterizing physical dampers during real legged impacts to evaluate their effectiveness for compliant legged locomotion.

dlg

Youtube link (url) [BibTex]


no image
Visual-Inertial Mapping with Non-Linear Factor Recovery

Usenko, V., Demmel, N., Schubert, D., Stückler, J., Cremers, D.

IEEE Robotics and Automation Letters (RA-L), 5, 2020, accepted for presentation at IEEE International Conference on Robotics and Automation (ICRA) 2020, to appear, arXiv:1904.06504 (article)

Abstract
Cameras and inertial measurement units are complementary sensors for ego-motion estimation and environment mapping. Their combination makes visual-inertial odometry (VIO) systems more accurate and robust. For globally consistent mapping, however, combining visual and inertial information is not straightforward. To estimate the motion and geometry with a set of images large baselines are required. Because of that, most systems operate on keyframes that have large time intervals between each other. Inertial data on the other hand quickly degrades with the duration of the intervals and after several seconds of integration, it typically contains only little useful information. In this paper, we propose to extract relevant information for visual-inertial mapping from visual-inertial odometry using non-linear factor recovery. We reconstruct a set of non-linear factors that make an optimal approximation of the information on the trajectory accumulated by VIO. To obtain a globally consistent map we combine these factors with loop-closing constraints using bundle adjustment. The VIO factors make the roll and pitch angles of the global map observable, and improve the robustness and the accuracy of the mapping. In experiments on a public benchmark, we demonstrate superior performance of our method over the state-of-the-art approaches.

ev

[BibTex]

[BibTex]


Postural Stability in Human Running with Step-down Perturbations: An Experimental and Numerical Study
Postural Stability in Human Running with Step-down Perturbations: An Experimental and Numerical Study

Oezge Drama, , Johanna Vielemeyer, , Alexander Badri-Spröwitz, , Müller, R.

2020 (article) In revision

Abstract
Postural stability is one of the most crucial elements in bipedal locomotion. Bipeds are dynamically unstable and need to maintain their trunk upright against the rotations induced by the ground reaction forces (GRFs), especially when running. Gait studies report that the GRF vectors focus around a virtual point above the center of mass (VPA), while the trunk moves forward in pitch axis during the stance phase of human running. However, a recent simulation study suggests that a virtual point below the center of mass (VPB) might be present in human running, since a VPA yields backward trunk rotation during the stance phase. In this work, we perform a gait analysis to investigate the existence and location of the VP in human running at 5 m s−1, and support our findings numerically using the spring-loaded inverted pendulum model with a trunk (TSLIP). We extend our analysis to include perturbations in terrain height (visible and camouflaged), and investigate the response of the VP mechanism to step-down perturbations both experimentally and numerically. Our experimental results show that the human running gait displays a VPB of ≈ −30 cm and a forward trunk motion during the stance phase. The camouflaged step-down perturbations affect the location of the VPB. Our simulation results suggest that the VPB is able to encounter the step-down perturbations and bring the system back to its initial equilibrium state.

dlg

link (url) [BibTex]

link (url) [BibTex]

2019


Series Elastic Behavior of Biarticular Muscle-Tendon Structure in a Robotic Leg
Series Elastic Behavior of Biarticular Muscle-Tendon Structure in a Robotic Leg

Ruppert, F., Badri-Spröwitz, A.

Frontiers in Neurorobotics, 64, pages: 13, 13, August 2019 (article)

dlg

Frontiers YouTube link (url) DOI [BibTex]

2019


Frontiers YouTube link (url) DOI [BibTex]


Beyond Basins of Attraction: Quantifying Robustness of Natural Dynamics
Beyond Basins of Attraction: Quantifying Robustness of Natural Dynamics

Steve Heim, , Spröwitz, A.

IEEE Transactions on Robotics (T-RO) , 35(4), pages: 939-952, August 2019 (article)

Abstract
Properly designing a system to exhibit favorable natural dynamics can greatly simplify designing or learning the control policy. However, it is still unclear what constitutes favorable natural dynamics and how to quantify its effect. Most studies of simple walking and running models have focused on the basins of attraction of passive limit cycles and the notion of self-stability. We instead emphasize the importance of stepping beyond basins of attraction. In this paper, we show an approach based on viability theory to quantify robust sets in state-action space. These sets are valid for the family of all robust control policies, which allows us to quantify the robustness inherent to the natural dynamics before designing the control policy or specifying a control objective. We illustrate our formulation using spring-mass models, simple low-dimensional models of running systems. We then show an example application by optimizing robustness of a simulated planar monoped, using a gradient-free optimization scheme. Both case studies result in a nonlinear effective stiffness providing more robustness.

dlg

arXiv preprint arXiv:1806.08081 T-RO link (url) DOI Project Page [BibTex]

arXiv preprint arXiv:1806.08081 T-RO link (url) DOI Project Page [BibTex]


Learning Variable Impedance Control for Contact Sensitive Tasks
Learning Variable Impedance Control for Contact Sensitive Tasks

Bogdanovic, M., Khadiv, M., Righetti, L.

arXiv preprint, arXiv:1907.07500, July 2019 (article)

Abstract
Reinforcement learning algorithms have shown great success in solving different problems ranging from playing video games to robotics. However, they struggle to solve delicate robotic problems, especially those involving contact interactions. Though in principle a policy outputting joint torques should be able to learn these tasks, in practice we see that they have difficulty to robustly solve the problem without any structure in the action space. In this paper, we investigate how the choice of action space can give robust performance in presence of contact uncertainties. We propose to learn a policy that outputs impedance and desired position in joint space as a function of system states without imposing any other structure to the problem. We compare the performance of this approach to torque and position control policies under different contact uncertainties. Extensive simulation results on two different systems, a hopper (floating-base) with intermittent contacts and a manipulator (fixed-base) wiping a table, show that our proposed approach outperforms policies outputting torque or position in terms of both learning rate and robustness to environment uncertainty.

mg

[BibTex]


no image
A Robustness Analysis of Inverse Optimal Control of Bipedal Walking

Rebula, J. R., Schaal, S., Finley, J., Righetti, L.

IEEE Robotics and Automation Letters, 4(4):4531-4538, 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]


no image
Rigid vs compliant contact: an experimental study on biped walking

Khadiv, M., Moosavian, S. A. A., Yousefi-Koma, A., Sadedel, M., Ehsani-Seresht, A., Mansouri, S.

Multibody System Dynamics, 45(4):379-401, 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]


no image
Birch tar production does not prove Neanderthal behavioral complexity

Schmidt, P., Blessing, M., Rageot, M., Iovita, R., Pfleging, J., Nickel, K. G., Righetti, L., Tennie, C.

Proceedings of the National Academy of Sciences (PNAS), 116(36):17707-17711, 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]

2007


no image
iCub - The Design and Realization of an Open Humanoid Platform for Cognitive and Neuroscience Research

Tsagarakis, N., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, F., Righetti, L., Santos-Victor, J., Ijspeert, A., Carrozza, M., Caldwell, D.

Advanced Robotics, 21(10):1151-1175, 2007 (article)

Abstract
The development of robotic cognition and the advancement of understanding of human cognition form two of the current greatest challenges in robotics and neuroscience, respectively. The RobotCub project aims to develop an embodied robotic child (iCub) with the physical (height 90 cm and mass less than 23 kg) and ultimately cognitive abilities of a 2.5-year-old human child. The iCub will be a freely available open system which can be used by scientists in all cognate disciplines from developmental psychology to epigenetic robotics to enhance understanding of cognitive systems through the study of cognitive development. The iCub will be open both in software, but more importantly in all aspects of the hardware and mechanical design. In this paper the design of the mechanisms and structures forming the basic 'body' of the iCub are described. The papers considers kinematic structures dynamic design criteria, actuator specification and selection, and detailed mechanical and electronic design. The paper concludes with tests of the performance of sample joints, and comparison of these results with the design requirements and simulation projects.

mg

link (url) DOI [BibTex]

2007


link (url) DOI [BibTex]