Header logo is


2015


Untethered Magnetic Micromanipulation
Untethered Magnetic Micromanipulation

Diller, E., Sitti, M.

In Micro-and Nanomanipulation Tools, 13, 10, Wiley-VCH Verlag GmbH & Co. KGaA, November 2015 (inbook)

Abstract
This chapter discusses the methods and state of the art in microscale manipulation in remote environments using untethered microrobotic devices. It focuses on manipulation at the size scale of tens to hundreds of microns, where small size leads to a dominance of microscale physical effects and challenges in fabrication and actuation. To motivate the challenges of operating at this size scale, the chapter includes coverage of the physical forces relevant to microrobot motion and manipulation below the millimeter-size scale. It then introduces the actuation methods commonly used in untethered manipulation schemes, with particular focus on magnetic actuation due to its wide use in the field. The chapter divides these manipulation techniques into two types: contact manipulation, which relies on direct pushing or grasping of objects for motion, and noncontact manipulation, which relies indirectly on induced fluid flow from the microrobot motion to move objects without any direct contact.

pi

DOI Project Page [BibTex]

2015


DOI Project Page [BibTex]

2010


no image
Nanohandling robot cells

Fatikow, Sergej, Wich, Thomas, Dahmen, Christian, Jasper, Daniel, Stolle, Christian, Eichhorn, Volkmar, Hagemann, Saskia, Weigel-Jech, Michael

In Handbook of Nanophysics: Nanomedicine and Nanorobotics, pages: 1-31, CRC Press, 2010 (incollection)

pi

[BibTex]

2010


[BibTex]


no image
Atomic-Force-Microscopy-Based Nanomanipulation Systems

Onal, C. D., Ozcan, O., Sitti, M.

In Handbook of Nanophysics: Nanomedicine and Nanorobotics, pages: 1-15, CRC Press, 2010 (incollection)

pi

[BibTex]

[BibTex]

2009


no image
An introduction to Kernel Learning Algorithms

Gehler, P., Schölkopf, B.

In Kernel Methods for Remote Sensing Data Analysis, pages: 25-48, 2, (Editors: Gustavo Camps-Valls and Lorenzo Bruzzone), Wiley, New York, NY, USA, 2009 (inbook)

Abstract
Kernel learning algorithms are currently becoming a standard tool in the area of machine learning and pattern recognition. In this chapter we review the fundamental theory of kernel learning. As the basic building block we introduce the kernel function, which provides an elegant and general way to compare possibly very complex objects. We then review the concept of a reproducing kernel Hilbert space and state the representer theorem. Finally we give an overview of the most prominent algorithms, which are support vector classification and regression, Gaussian Processes and kernel principal analysis. With multiple kernel learning and structured output prediction we also introduce some more recent advancements in the field.

ei ps

link (url) DOI [BibTex]

2009


link (url) DOI [BibTex]


no image
Visual Object Discovery

Sinha, P., Balas, B., Ostrovsky, Y., Wulff, J.

In Object Categorization: Computer and Human Vision Perspectives, pages: 301-323, (Editors: S. J. Dickinson, A. Leonardis, B. Schiele, M.J. Tarr), Cambridge University Press, 2009 (inbook)

ps

link (url) [BibTex]

link (url) [BibTex]

1997


Recognizing human motion using parameterized models of optical flow
Recognizing human motion using parameterized models of optical flow

Black, M. J., Yacoob, Y., Ju, X. S.

In Motion-Based Recognition, pages: 245-269, (Editors: Mubarak Shah and Ramesh Jain,), Kluwer Academic Publishers, Boston, MA, 1997 (incollection)

ps

pdf [BibTex]

1997


pdf [BibTex]

1993


Mixture models for optical flow computation
Mixture models for optical flow computation

Jepson, A., Black, M.

In Partitioning Data Sets, DIMACS Workshop, pages: 271-286, (Editors: Ingemar Cox, Pierre Hansen, and Bela Julesz), AMS Pub, Providence, RI., April 1993 (incollection)

ps

pdf [BibTex]

1993


pdf [BibTex]