Header logo is


2017


The Numerics of GANs
The Numerics of GANs

Mescheder, L., Nowozin, S., Geiger, A.

In Proceedings from the conference "Neural Information Processing Systems 2017., (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., Advances in Neural Information Processing Systems 30 (NIPS), December 2017 (inproceedings)

Abstract
In this paper, we analyze the numerics of common algorithms for training Generative Adversarial Networks (GANs). Using the formalism of smooth two-player games we analyze the associated gradient vector field of GAN training objectives. Our findings suggest that the convergence of current algorithms suffers due to two factors: i) presence of eigenvalues of the Jacobian of the gradient vector field with zero real-part, and ii) eigenvalues with big imaginary part. Using these findings, we design a new algorithm that overcomes some of these limitations and has better convergence properties. Experimentally, we demonstrate its superiority on training common GAN architectures and show convergence on GAN architectures that are known to be notoriously hard to train.

avg

pdf Project Page [BibTex]

2017


pdf Project Page [BibTex]


Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?
Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?

Behl, A., Jafari, O. H., Mustikovela, S. K., Alhaija, H. A., Rother, C., Geiger, A.

In Proceedings IEEE International Conference on Computer Vision (ICCV), IEEE, Piscataway, NJ, USA, IEEE International Conference on Computer Vision (ICCV), October 2017 (inproceedings)

Abstract
Existing methods for 3D scene flow estimation often fail in the presence of large displacement or local ambiguities, e.g., at texture-less or reflective surfaces. However, these challenges are omnipresent in dynamic road scenes, which is the focus of this work. Our main contribution is to overcome these 3D motion estimation problems by exploiting recognition. In particular, we investigate the importance of recognition granularity, from coarse 2D bounding box estimates over 2D instance segmentations to fine-grained 3D object part predictions. We compute these cues using CNNs trained on a newly annotated dataset of stereo images and integrate them into a CRF-based model for robust 3D scene flow estimation - an approach we term Instance Scene Flow. We analyze the importance of each recognition cue in an ablation study and observe that the instance segmentation cue is by far strongest, in our setting. We demonstrate the effectiveness of our method on the challenging KITTI 2015 scene flow benchmark where we achieve state-of-the-art performance at the time of submission.

avg

pdf suppmat Poster Project Page [BibTex]

pdf suppmat Poster Project Page [BibTex]


Sparsity Invariant CNNs
Sparsity Invariant CNNs

Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.

International Conference on 3D Vision (3DV) 2017, International Conference on 3D Vision (3DV), October 2017 (conference)

Abstract
In this paper, we consider convolutional neural networks operating on sparse inputs with an application to depth upsampling from sparse laser scan data. First, we show that traditional convolutional networks perform poorly when applied to sparse data even when the location of missing data is provided to the network. To overcome this problem, we propose a simple yet effective sparse convolution layer which explicitly considers the location of missing data during the convolution operation. We demonstrate the benefits of the proposed network architecture in synthetic and real experiments \wrt various baseline approaches. Compared to dense baselines, the proposed sparse convolution network generalizes well to novel datasets and is invariant to the level of sparsity in the data. For our evaluation, we derive a novel dataset from the KITTI benchmark, comprising 93k depth annotated RGB images. Our dataset allows for training and evaluating depth upsampling and depth prediction techniques in challenging real-world settings.

avg

pdf suppmat Project Page Project Page [BibTex]

pdf suppmat Project Page Project Page [BibTex]


OctNetFusion: Learning Depth Fusion from Data
OctNetFusion: Learning Depth Fusion from Data

Riegler, G., Ulusoy, A. O., Bischof, H., Geiger, A.

International Conference on 3D Vision (3DV) 2017, International Conference on 3D Vision (3DV), October 2017 (conference)

Abstract
In this paper, we present a learning based approach to depth fusion, i.e., dense 3D reconstruction from multiple depth images. The most common approach to depth fusion is based on averaging truncated signed distance functions, which was originally proposed by Curless and Levoy in 1996. While this method is simple and provides great results, it is not able to reconstruct (partially) occluded surfaces and requires a large number frames to filter out sensor noise and outliers. Motivated by the availability of large 3D model repositories and recent advances in deep learning, we present a novel 3D CNN architecture that learns to predict an implicit surface representation from the input depth maps. Our learning based method significantly outperforms the traditional volumetric fusion approach in terms of noise reduction and outlier suppression. By learning the structure of real world 3D objects and scenes, our approach is further able to reconstruct occluded regions and to fill in gaps in the reconstruction. We demonstrate that our learning based approach outperforms both vanilla TSDF fusion as well as TV-L1 fusion on the task of volumetric fusion. Further, we demonstrate state-of-the-art 3D shape completion results.

avg

pdf Video 1 Video 2 Project Page Project Page [BibTex]

pdf Video 1 Video 2 Project Page Project Page [BibTex]


Direct Visual Odometry for a Fisheye-Stereo Camera
Direct Visual Odometry for a Fisheye-Stereo Camera

Liu, P., Heng, L., Sattler, T., Geiger, A., Pollefeys, M.

In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2017 (inproceedings)

Abstract
We present a direct visual odometry algorithm for a fisheye-stereo camera. Our algorithm performs simultaneous camera motion estimation and semi-dense reconstruction. The pipeline consists of two threads: a tracking thread and a mapping thread. In the tracking thread, we estimate the camera pose via semi-dense direct image alignment. To have a wider field of view (FoV) which is important for robotic perception, we use fisheye images directly without converting them to conventional pinhole images which come with a limited FoV. To address the epipolar curve problem, plane-sweeping stereo is used for stereo matching and depth initialization. Multiple depth hypotheses are tracked for selected pixels to better capture the uncertainty characteristics of stereo matching. Temporal motion stereo is then used to refine the depth and remove false positive depth hypotheses. Our implementation runs at an average of 20 Hz on a low-end PC. We run experiments in outdoor environments to validate our algorithm, and discuss the experimental results. We experimentally show that we are able to estimate 6D poses with low drift, and at the same time, do semi-dense 3D reconstruction with high accuracy.

avg

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Augmented Reality Meets Deep Learning for Car Instance Segmentation in Urban Scenes
Augmented Reality Meets Deep Learning for Car Instance Segmentation in Urban Scenes

Alhaija, H. A., Mustikovela, S. K., Mescheder, L., Geiger, A., Rother, C.

In Proceedings of the British Machine Vision Conference 2017, Proceedings of the British Machine Vision Conference, September 2017 (inproceedings)

Abstract
The success of deep learning in computer vision is based on the availability of large annotated datasets. To lower the need for hand labeled images, virtually rendered 3D worlds have recently gained popularity. Unfortunately, creating realistic 3D content is challenging on its own and requires significant human effort. In this work, we propose an alternative paradigm which combines real and synthetic data for learning semantic instance segmentation models. Exploiting the fact that not all aspects of the scene are equally important for this task, we propose to augment real-world imagery with virtual objects of the target category. Capturing real-world images at large scale is easy and cheap, and directly provides real background appearances without the need for creating complex 3D models of the environment. We present an efficient procedure to augment these images with virtual objects. This allows us to create realistic composite images which exhibit both realistic background appearance as well as a large number of complex object arrangements. In contrast to modeling complete 3D environments, our data augmentation approach requires only a few user interactions in combination with 3D shapes of the target object category. We demonstrate the utility of the proposed approach for training a state-of-the-art high-capacity deep model for semantic instance segmentation. In particular, we consider the task of segmenting car instances on the KITTI dataset which we have annotated with pixel-accurate ground truth. Our experiments demonstrate that models trained on augmented imagery generalize better than those trained on synthetic data or models trained on limited amounts of annotated real data.

avg

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks

Mescheder, L., Nowozin, S., Geiger, A.

In Proceedings of the 34th International Conference on Machine Learning, 70, Proceedings of Machine Learning Research, (Editors: Doina Precup, Yee Whye Teh), PMLR, International Conference on Machine Learning (ICML), August 2017 (inproceedings)

Abstract
Variational Autoencoders (VAEs) are expressive latent variable models that can be used to learn complex probability distributions from training data. However, the quality of the resulting model crucially relies on the expressiveness of the inference model. We introduce Adversarial Variational Bayes (AVB), a technique for training Variational Autoencoders with arbitrarily expressive inference models. We achieve this by introducing an auxiliary discriminative network that allows to rephrase the maximum-likelihood-problem as a two-player game, hence establishing a principled connection between VAEs and Generative Adversarial Networks (GANs). We show that in the nonparametric limit our method yields an exact maximum-likelihood assignment for the parameters of the generative model, as well as the exact posterior distribution over the latent variables given an observation. Contrary to competing approaches which combine VAEs with GANs, our approach has a clear theoretical justification, retains most advantages of standard Variational Autoencoders and is easy to implement.

avg

pdf suppmat Project Page arxiv-version Project Page [BibTex]

pdf suppmat Project Page arxiv-version Project Page [BibTex]


Slow Flow: Exploiting High-Speed Cameras for Accurate and Diverse Optical Flow Reference Data
Slow Flow: Exploiting High-Speed Cameras for Accurate and Diverse Optical Flow Reference Data

Janai, J., Güney, F., Wulff, J., Black, M., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 1406-1416, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
Existing optical flow datasets are limited in size and variability due to the difficulty of capturing dense ground truth. In this paper, we tackle this problem by tracking pixels through densely sampled space-time volumes recorded with a high-speed video camera. Our model exploits the linearity of small motions and reasons about occlusions from multiple frames. Using our technique, we are able to establish accurate reference flow fields outside the laboratory in natural environments. Besides, we show how our predictions can be used to augment the input images with realistic motion blur. We demonstrate the quality of the produced flow fields on synthetic and real-world datasets. Finally, we collect a novel challenging optical flow dataset by applying our technique on data from a high-speed camera and analyze the performance of the state-of-the-art in optical flow under various levels of motion blur.

avg ps

pdf suppmat Project page Video DOI Project Page [BibTex]

pdf suppmat Project page Video DOI Project Page [BibTex]


OctNet: Learning Deep 3D Representations at High Resolutions
OctNet: Learning Deep 3D Representations at High Resolutions

Riegler, G., Ulusoy, O., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
We present OctNet, a representation for deep learning with sparse 3D data. In contrast to existing models, our representation enables 3D convolutional networks which are both deep and high resolution. Towards this goal, we exploit the sparsity in the input data to hierarchically partition the space using a set of unbalanced octrees where each leaf node stores a pooled feature representation. This allows to focus memory allocation and computation to the relevant dense regions and enables deeper networks without compromising resolution. We demonstrate the utility of our OctNet representation by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.

avg ps

pdf suppmat Project Page Video Project Page [BibTex]

pdf suppmat Project Page Video Project Page [BibTex]


A Multi-View Stereo Benchmark with High-Resolution Images and Multi-Camera Videos
A Multi-View Stereo Benchmark with High-Resolution Images and Multi-Camera Videos

Schöps, T., Schönberger, J. L., Galliani, S., Sattler, T., Schindler, K., Pollefeys, M., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
Motivated by the limitations of existing multi-view stereo benchmarks, we present a novel dataset for this task. Towards this goal, we recorded a variety of indoor and outdoor scenes using a high-precision laser scanner and captured both high-resolution DSLR imagery as well as synchronized low-resolution stereo videos with varying fields-of-view. To align the images with the laser scans, we propose a robust technique which minimizes photometric errors conditioned on the geometry. In contrast to previous datasets, our benchmark provides novel challenges and covers a diverse set of viewpoints and scene types, ranging from natural scenes to man-made indoor and outdoor environments. Furthermore, we provide data at significantly higher temporal and spatial resolution. Our benchmark is the first to cover the important use case of hand-held mobile devices while also providing high-resolution DSLR camera images. We make our datasets and an online evaluation server available at http://www.eth3d.net.

avg

pdf suppmat Project Page Project Page [BibTex]

pdf suppmat Project Page Project Page [BibTex]


Toroidal Constraints for Two Point Localization Under High Outlier Ratios
Toroidal Constraints for Two Point Localization Under High Outlier Ratios

Camposeco, F., Sattler, T., Cohen, A., Geiger, A., Pollefeys, M.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
Localizing a query image against a 3D model at large scale is a hard problem, since 2D-3D matches become more and more ambiguous as the model size increases. This creates a need for pose estimation strategies that can handle very low inlier ratios. In this paper, we draw new insights on the geometric information available from the 2D-3D matching process. As modern descriptors are not invariant against large variations in viewpoint, we are able to find the rays in space used to triangulate a given point that are closest to a query descriptor. It is well known that two correspondences constrain the camera to lie on the surface of a torus. Adding the knowledge of direction of triangulation, we are able to approximate the position of the camera from \emphtwo matches alone. We derive a geometric solver that can compute this position in under 1 microsecond. Using this solver, we propose a simple yet powerful outlier filter which scales quadratically in the number of matches. We validate the accuracy of our solver and demonstrate the usefulness of our method in real world settings.

avg

pdf suppmat Project Page Project Page [BibTex]

pdf suppmat Project Page pdf Project Page [BibTex]


Semantic Multi-view Stereo: Jointly Estimating Objects and Voxels
Semantic Multi-view Stereo: Jointly Estimating Objects and Voxels

Ulusoy, A. O., Black, M. J., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
Dense 3D reconstruction from RGB images is a highly ill-posed problem due to occlusions, textureless or reflective surfaces, as well as other challenges. We propose object-level shape priors to address these ambiguities. Towards this goal, we formulate a probabilistic model that integrates multi-view image evidence with 3D shape information from multiple objects. Inference in this model yields a dense 3D reconstruction of the scene as well as the existence and precise 3D pose of the objects in it. Our approach is able to recover fine details not captured in the input shapes while defaulting to the input models in occluded regions where image evidence is weak. Due to its probabilistic nature, the approach is able to cope with the approximate geometry of the 3D models as well as input shapes that are not present in the scene. We evaluate the approach quantitatively on several challenging indoor and outdoor datasets.

avg ps

YouTube pdf suppmat Project Page [BibTex]

YouTube pdf suppmat Project Page [BibTex]


Locomotion of light-driven soft microrobots through a hydrogel via local melting
Locomotion of light-driven soft microrobots through a hydrogel via local melting

Palagi, S., Mark, A. G., Melde, K., Qiu, T., Zeng, H., Parmeggiani, C., Martella, D., Wiersma, D. S., Fischer, P.

In 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2017 (inproceedings)

Abstract
Soft mobile microrobots whose deformation can be directly controlled by an external field can adapt to move in different environments. This is the case for the light-driven microrobots based on liquid-crystal elastomers (LCEs). Here we show that the soft microrobots can move through an agarose hydrogel by means of light-controlled travelling-wave motions. This is achieved by exploiting the inherent rise of the LCE temperature above the melting temperature of the agarose gel, which facilitates penetration of the microrobot through the hydrogel. The locomotion performance is investigated as a function of the travelling-wave parameters, showing that effective propulsion can be obtained by adapting the generated motion to the specific environmental conditions.

pf

DOI [BibTex]

DOI [BibTex]


Wireless micro-robots for endoscopic applications in urology
Wireless micro-robots for endoscopic applications in urology

Adams, F., Qiu, T., Mark, A. G., Melde, K., Palagi, S., Miernik, A., Fischer, P.

In Eur Urol Suppl, 16(3):e1914, March 2017 (inproceedings)

Abstract
Endoscopy is an essential and common method for both diagnostics and therapy in Urology. Current flexible endoscope is normally cable-driven, thus it is hard to be miniaturized and its reachability is restricted as only one bending section near the tip with one degree of freedom (DoF) is allowed. Recent progresses in micro-robotics offer a unique opportunity for medical inspections in minimally invasive surgery. Micro-robots are active devices that has a feature size smaller than one millimeter and can normally be actuated and controlled wirelessly. Magnetically actuated micro-robots have been demonstrated to propel through biological fluids.Here, we report a novel micro robotic arm, which is actuated wirelessly by ultrasound. It works as a miniaturized endoscope with a side length of ~1 mm, which fits through the 3 Fr. tool channel of a cystoscope, and successfully performs an active cystoscopy in a rabbit bladder.

pf

link (url) DOI [BibTex]


no image
Pattern Generation for Walking on Slippery Terrains

Khadiv, M., Moosavian, S. A. A., Herzog, A., Righetti, L.

In 2017 5th International Conference on Robotics and Mechatronics (ICROM), Iran, August 2017 (inproceedings)

Abstract
In this paper, we extend state of the art Model Predictive Control (MPC) approaches to generate safe bipedal walking on slippery surfaces. In this setting, we formulate walking as a trade off between realizing a desired walking velocity and preserving robust foot-ground contact. Exploiting this for- mulation inside MPC, we show that safe walking on various flat terrains can be achieved by compromising three main attributes, i. e. walking velocity tracking, the Zero Moment Point (ZMP) modulation, and the Required Coefficient of Friction (RCoF) regulation. Simulation results show that increasing the walking velocity increases the possibility of slippage, while reducing the slippage possibility conflicts with reducing the tip-over possibility of the contact and vice versa.

mg

link (url) [BibTex]

link (url) [BibTex]

2016


Soft continuous microrobots with multiple intrinsic degrees of freedom
Soft continuous microrobots with multiple intrinsic degrees of freedom

Palagi, S., Mark, A. G., Melde, K., Zeng, H., Parmeggiani, C., Martella, D., Wiersma, D. S., Fischer, P.

In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2016 (inproceedings)

Abstract
One of the main challenges in the development of microrobots, i.e. robots at the sub-millimeter scale, is the difficulty of adopting traditional solutions for power, control and, especially, actuation. As a result, most current microrobots are directly manipulated by external fields, and possess only a few passive degrees of freedom (DOFs). We have reported a strategy that enables embodiment, remote powering and control of a large number of DOFs in mobile soft microrobots. These consist of photo-responsive materials, such that the actuation of their soft continuous body can be selectively and dynamically controlled by structured light fields. Here we use finite-element modelling to evaluate the effective number of DOFs that are addressable in our microrobots. We also demonstrate that by this flexible approach different actuation patterns can be obtained, and thus different locomotion performances can be achieved within the very same microrobot. The reported results confirm the versatility of the proposed approach, which allows for easy application-specific optimization and online reconfiguration of the microrobot's behavior. Such versatility will enable advanced applications of robotics and automation at the micro scale.

pf

DOI [BibTex]

2016


DOI [BibTex]


Wireless actuator based on ultrasonic bubble streaming
Wireless actuator based on ultrasonic bubble streaming

Qiu, T., Palagi, S., Mark, A. G., Melde, K., Fischer, P.

In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2016 (inproceedings)

Abstract
Miniaturized actuators are a key element for the manipulation and automation at small scales. Here, we propose a new miniaturized actuator, which consists of an array of micro gas bubbles immersed in a fluid. Under ultrasonic excitation, the oscillation of micro gas bubbles results in acoustic streaming and provides a propulsive force that drives the actuator. The actuator was fabricated by lithography and fluidic streaming was observed under ultrasound excitation. Theoretical modelling and numerical simulations were carried out to show that lowing the surface tension results in a larger amplitude of the bubble oscillation, and thus leads to a higher propulsive force. Experimental results also demonstrate that the propulsive force increases 3.5 times when the surface tension is lowered by adding a surfactant. An actuator with a 4×4 mm 2 surface area provides a driving force of about 0.46 mN, suggesting that it is possible to be used as a wireless actuator for small-scale robots and medical instruments.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Patches, Planes and Probabilities: A Non-local Prior for Volumetric {3D} Reconstruction
Patches, Planes and Probabilities: A Non-local Prior for Volumetric 3D Reconstruction

Ulusoy, A. O., Black, M. J., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
In this paper, we propose a non-local structured prior for volumetric multi-view 3D reconstruction. Towards this goal, we present a novel Markov random field model based on ray potentials in which assumptions about large 3D surface patches such as planarity or Manhattan world constraints can be efficiently encoded as probabilistic priors. We further derive an inference algorithm that reasons jointly about voxels, pixels and image segments, and estimates marginal distributions of appearance, occupancy, depth, normals and planarity. Key to tractable inference is a novel hybrid representation that spans both voxel and pixel space and that integrates non-local information from 2D image segmentations in a principled way. We compare our non-local prior to commonly employed local smoothness assumptions and a variety of state-of-the-art volumetric reconstruction baselines on challenging outdoor scenes with textureless and reflective surfaces. Our experiments indicate that regularizing over larger distances has the potential to resolve ambiguities where local regularizers fail.

avg ps

YouTube pdf poster suppmat Project Page [BibTex]

YouTube pdf poster suppmat Project Page [BibTex]


Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer
Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer

Xie, J., Kiefel, M., Sun, M., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
Semantic annotations are vital for training models for object recognition, semantic segmentation or scene understanding. Unfortunately, pixelwise annotation of images at very large scale is labor-intensive and only little labeled data is available, particularly at instance level and for street scenes. In this paper, we propose to tackle this problem by lifting the semantic instance labeling task from 2D into 3D. Given reconstructions from stereo or laser data, we annotate static 3D scene elements with rough bounding primitives and develop a probabilistic model which transfers this information into the image domain. We leverage our method to obtain 2D labels for a novel suburban video dataset which we have collected, resulting in 400k semantic and instance image annotations. A comparison of our method to state-of-the-art label transfer baselines reveals that 3D information enables more efficient annotation while at the same time resulting in improved accuracy and time-coherent labels.

avg ps

pdf suppmat Project Page Project Page [BibTex]

pdf suppmat Project Page Project Page [BibTex]


Auxetic Metamaterial Simplifies Soft Robot Design
Auxetic Metamaterial Simplifies Soft Robot Design

Mark, A. G., Palagi, S., Qiu, T., Fischer, P.

In 2016 IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 4951-4956, May 2016 (inproceedings)

Abstract
Soft materials are being adopted in robotics in order to facilitate biomedical applications and in order to achieve simpler and more capable robots. One route to simplification is to design the robot's body using `smart materials' that carry the burden of control and actuation. Metamaterials enable just such rational design of the material properties. Here we present a soft robot that exploits mechanical metamaterials for the intrinsic synchronization of two passive clutches which contact its travel surface. Doing so allows it to move through an enclosed passage with an inchworm motion propelled by a single actuator. Our soft robot consists of two 3D-printed metamaterials that implement auxetic and normal elastic properties. The design, fabrication and characterization of the metamaterials are described. In addition, a working soft robot is presented. Since the synchronization mechanism is a feature of the robot's material body, we believe that the proposed design will enable compliant and robust implementations that scale well with miniaturization.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Towards Photo-Induced Swimming: Actuation of Liquid Crystalline  Elastomer in Water
Towards Photo-Induced Swimming: Actuation of Liquid Crystalline Elastomer in Water

cerretti, G., Martella, D., Zeng, H., Parmeggiani, C., Palagi, S., Mark, A. G., Melde, K., Qiu, T., Fischer, P., Wiersma, D.

In Proc. of SPIE 9738, pages: Laser 3D Manufacturing III, 97380T, April 2016 (inproceedings)

Abstract
Liquid Crystalline Elastomers (LCEs) are very promising smart materials that can be made sensitive to different external stimuli, such as heat, pH, humidity and light, by changing their chemical composition. In this paper we report the implementation of a nematically aligned LCE actuator able to undergo large light-induced deformations. We prove that this property is still present even when the actuator is submerged in fresh water. Thanks to the presence of azo-dye moieties, capable of going through a reversible trans-cis photo-isomerization, and by applying light with two different wavelengths we managed to control the bending of such actuator in the liquid environment. The reported results represent the first step towards swimming microdevices powered by light.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Deep Discrete Flow
Deep Discrete Flow

Güney, F., Geiger, A.

Asian Conference on Computer Vision (ACCV), 2016 (conference) Accepted

avg ps

pdf suppmat Project Page [BibTex]

pdf suppmat Project Page [BibTex]


no image
On the Effects of Measurement Uncertainty in Optimal Control of Contact Interactions

Ponton, B., Schaal, S., Righetti, L.

In The 12th International Workshop on the Algorithmic Foundations of Robotics WAFR, Berkeley, USA, 2016 (inproceedings)

Abstract
Stochastic Optimal Control (SOC) typically considers noise only in the process model, i.e. unknown disturbances. However, in many robotic applications involving interaction with the environment, such as locomotion and manipulation, uncertainty also comes from lack of precise knowledge of the world, which is not an actual disturbance. We analyze the effects of also considering noise in the measurement model, by devel- oping a SOC algorithm based on risk-sensitive control, that includes the dynamics of an observer in such a way that the control law explicitly de- pends on the current measurement uncertainty. In simulation results on a simple 2D manipulator, we have observed that measurement uncertainty leads to low impedance behaviors, a result in contrast with the effects of process noise that creates stiff behaviors. This suggests that taking into account measurement uncertainty could be a potentially very interesting way to approach problems involving uncertain contact interactions.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
A Convex Model of Momentum Dynamics for Multi-Contact Motion Generation

Ponton, B., Herzog, A., Schaal, S., Righetti, L.

In 2016 IEEE-RAS 16th International Conference on Humanoid Robots Humanoids, pages: 842-849, IEEE, Cancun, Mexico, 2016 (inproceedings)

Abstract
Linear models for control and motion generation of humanoid robots have received significant attention in the past years, not only due to their well known theoretical guarantees, but also because of practical computational advantages. However, to tackle more challenging tasks and scenarios such as locomotion on uneven terrain, a more expressive model is required. In this paper, we are interested in contact interaction-centered motion optimization based on the momentum dynamics model. This model is non-linear and non-convex; however, we find a relaxation of the problem that allows us to formulate it as a single convex quadratically-constrained quadratic program (QCQP) that can be very efficiently optimized and is useful for multi-contact planning. This convex model is then coupled to the optimization of end-effector contact locations using a mixed integer program, which can also be efficiently solved. This becomes relevant e.g. to recover from external pushes, where a predefined stepping plan is likely to fail and an online adaptation of the contact location is needed. The performance of our algorithm is demonstrated in several multi-contact scenarios for a humanoid robot.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inertial Sensor-Based Humanoid Joint State Estimation

Rotella, N., Mason, S., Schaal, S., Righetti, L.

In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages: 1825-1831, IEEE, Stockholm, Sweden, 2016 (inproceedings)

Abstract
This work presents methods for the determination of a humanoid robot's joint velocities and accelerations directly from link-mounted Inertial Measurement Units (IMUs) each containing a three-axis gyroscope and a three-axis accelerometer. No information about the global pose of the floating base or its links is required and precise knowledge of the link IMU poses is not necessary due to presented calibration routines. Additionally, a filter is introduced to fuse gyroscope angular velocities with joint position measurements and compensate the computed joint velocities for time-varying gyroscope biases. The resulting joint velocities are subject to less noise and delay than filtered velocities computed from numerical differentiation of joint potentiometer signals, leading to superior performance in joint feedback control as demonstrated in experiments performed on a SARCOS hydraulic humanoid.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Stepping Stabilization Using a Combination of DCM Tracking and Step Adjustment

Khadiv, M., Kleff, S., Herzog, A., Moosavian, S. A. A., Schaal, S., Righetti, L.

In 2016 4th International Conference on Robotics and Mechatronics (ICROM), pages: 130-135, IEEE, Teheran, Iran, 2016 (inproceedings)

Abstract
In this paper, a method for stabilizing biped robots stepping by a combination of Divergent Component of Motion (DCM) tracking and step adjustment is proposed. In this method, the DCM trajectory is generated, consistent with the predefined footprints. Furthermore, a swing foot trajectory modification strategy is proposed to adapt the landing point, using DCM measurement. In order to apply the generated trajectories to the full robot, a Hierarchical Inverse Dynamics (HID) is employed. The HID enables us to use different combinations of the DCM tracking and step adjustment for stabilizing different biped robots. Simulation experiments on two scenarios for two different simulated robots, one with active ankles and the other with passive ankles, are carried out. Simulation results demonstrate the effectiveness of the proposed method for robots with both active and passive ankles.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Structured contact force optimization for kino-dynamic motion generation

Herzog, A., Schaal, S., Righetti, L.

In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 2703-2710, IEEE, Daejeon, South Korea, 2016 (inproceedings)

Abstract
Optimal control approaches in combination with trajectory optimization have recently proven to be a promising control strategy for legged robots. Computationally efficient and robust algorithms were derived using simplified models of the contact interaction between robot and environment such as the linear inverted pendulum model (LIPM). However, as humanoid robots enter more complex environments, less restrictive models become increasingly important. As we leave the regime of linear models, we need to build dedicated solvers that can compute interaction forces together with consistent kinematic plans for the whole-body. In this paper, we address the problem of planning robot motion and interaction forces for legged robots given predefined contact surfaces. The motion generation process is decomposed into two alternating parts computing force and motion plans in coherence. We focus on the properties of the momentum computation leading to sparse optimal control formulations to be exploited by a dedicated solver. In our experiments, we demonstrate that our motion generation algorithm computes consistent contact forces and joint trajectories for our humanoid robot. We also demonstrate the favorable time complexity due to our formulation and composition of the momentum equations.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Balancing and Walking Using Full Dynamics LQR Control With Contact Constraints

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 63-68, IEEE, Cancun, Mexico, 2016 (inproceedings)

Abstract
Torque control algorithms which consider robot dynamics and contact constraints are important for creating dynamic behaviors for humanoids. As computational power increases, algorithms tend to also increase in complexity. However, it is not clear how much complexity is really required to create controllers which exhibit good performance. In this paper, we study the capabilities of a simple approach based on contact consistent LQR controllers designed around key poses to control various tasks on a humanoid robot. We present extensive experimental results on a hydraulic, torque controlled humanoid performing balancing and stepping tasks. This feedback control approach captures the necessary synergies between the DoFs of the robot to guarantee good control performance. We show that for the considered tasks, it is only necessary to re-linearize the dynamics of the robot at different contact configurations and that increasing the number of LQR controllers along desired trajectories does not improve performance. Our result suggest that very simple controllers can yield good performance competitive with current state of the art, but more complex, optimization-based whole-body controllers. A video of the experiments can be found at https://youtu.be/5T08CNKV1hw.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Step Timing Adjustement: a Step toward Generating Robust Gaits

Khadiv, M., Herzog, A., Moosavian, S. A. A., Righetti, L.

In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 35-42, IEEE, Cancun, Mexico, 2016 (inproceedings)

Abstract
Step adjustment for humanoid robots has been shown to improve robustness in gaits. However, step duration adaptation is often neglected in control strategies. In this paper, we propose an approach that combines both step location and timing adjustment for generating robust gaits. In this approach, step location and step timing are decided, based on feedback from the current state of the robot. The proposed approach is comprised of two stages. In the first stage, the nominal step location and step duration for the next step or a previewed number of steps are specified. In this stage which is done at the start of each step, the main goal is to specify the best step length and step duration for a desired walking speed. The second stage deals with finding the best landing point and landing time of the swing foot at each control cycle. In this stage, stability of the gaits is preserved by specifying a desired offset between the swing foot landing point and the Divergent Component of Motion (DCM) at the end of current step. After specifying the landing point of the swing foot at a desired time, the swing foot trajectory is regenerated at each control cycle to realize desired landing properties. Simulation on different scenarios shows the robustness of the generated gaits from our proposed approach compared to the case where no timing adjustment is employed.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2015


Exploiting Object Similarity in 3D Reconstruction
Exploiting Object Similarity in 3D Reconstruction

Zhou, C., Güney, F., Wang, Y., Geiger, A.

In International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
Despite recent progress, reconstructing outdoor scenes in 3D from movable platforms remains a highly difficult endeavor. Challenges include low frame rates, occlusions, large distortions and difficult lighting conditions. In this paper, we leverage the fact that the larger the reconstructed area, the more likely objects of similar type and shape will occur in the scene. This is particularly true for outdoor scenes where buildings and vehicles often suffer from missing texture or reflections, but share similarity in 3D shape. We take advantage of this shape similarity by locating objects using detectors and jointly reconstructing them while learning a volumetric model of their shape. This allows us to reduce noise while completing missing surfaces as objects of similar shape benefit from all observations for the respective category. We evaluate our approach with respect to LIDAR ground truth on a novel challenging suburban dataset and show its advantages over the state-of-the-art.

avg ps

pdf suppmat [BibTex]

2015


pdf suppmat [BibTex]


FollowMe: Efficient Online Min-Cost Flow Tracking with Bounded Memory and Computation
FollowMe: Efficient Online Min-Cost Flow Tracking with Bounded Memory and Computation

Lenz, P., Geiger, A., Urtasun, R.

In International Conference on Computer Vision (ICCV), International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
One of the most popular approaches to multi-target tracking is tracking-by-detection. Current min-cost flow algorithms which solve the data association problem optimally have three main drawbacks: they are computationally expensive, they assume that the whole video is given as a batch, and they scale badly in memory and computation with the length of the video sequence. In this paper, we address each of these issues, resulting in a computationally and memory-bounded solution. First, we introduce a dynamic version of the successive shortest-path algorithm which solves the data association problem optimally while reusing computation, resulting in faster inference than standard solvers. Second, we address the optimal solution to the data association problem when dealing with an incoming stream of data (i.e., online setting). Finally, we present our main contribution which is an approximate online solution with bounded memory and computation which is capable of handling videos of arbitrary length while performing tracking in real time. We demonstrate the effectiveness of our algorithms on the KITTI and PETS2009 benchmarks and show state-of-the-art performance, while being significantly faster than existing solvers.

avg ps

pdf suppmat video project [BibTex]

pdf suppmat video project [BibTex]


Towards Probabilistic Volumetric Reconstruction using Ray Potentials
Towards Probabilistic Volumetric Reconstruction using Ray Potentials

(Best Paper Award)

Ulusoy, A. O., Geiger, A., Black, M. J.

In 3D Vision (3DV), 2015 3rd International Conference on, pages: 10-18, Lyon, October 2015 (inproceedings)

Abstract
This paper presents a novel probabilistic foundation for volumetric 3-d reconstruction. We formulate the problem as inference in a Markov random field, which accurately captures the dependencies between the occupancy and appearance of each voxel, given all input images. Our main contribution is an approximate highly parallelized discrete-continuous inference algorithm to compute the marginal distributions of each voxel's occupancy and appearance. In contrast to the MAP solution, marginals encode the underlying uncertainty and ambiguity in the reconstruction. Moreover, the proposed algorithm allows for a Bayes optimal prediction with respect to a natural reconstruction loss. We compare our method to two state-of-the-art volumetric reconstruction algorithms on three challenging aerial datasets with LIDAR ground truth. Our experiments demonstrate that the proposed algorithm compares favorably in terms of reconstruction accuracy and the ability to expose reconstruction uncertainty.

avg ps

code YouTube pdf suppmat DOI Project Page [BibTex]

code YouTube pdf suppmat DOI Project Page [BibTex]


3D-printed Soft Microrobot for Swimming in Biological Fluids
3D-printed Soft Microrobot for Swimming in Biological Fluids

Qiu, T., Palagi, S., Fischer, P.

In Conf. Proc. IEEE Eng. Med. Biol. Soc., pages: 4922-4925, August 2015 (inproceedings)

Abstract
Microscopic artificial swimmers hold the potential to enable novel non-invasive medical procedures. In order to ease their translation towards real biomedical applications, simpler designs as well as cheaper yet more reliable materials and fabrication processes should be adopted, provided that the functionality of the microrobots can be kept. A simple single-hinge design could already enable microswimming in non-Newtonian fluids, which most bodily fluids are. Here, we address the fabrication of such single-hinge microrobots with a 3D-printed soft material. Firstly, a finite element model is developed to investigate the deformability of the 3D-printed microstructure under typical values of the actuating magnetic fields. Then the microstructures are fabricated by direct 3D-printing of a soft material and their swimming performances are evaluated. The speeds achieved with the 3D-printed microrobots are comparable to those obtained in previous work with complex fabrication procedures, thus showing great promise for 3D-printed microrobots to be operated in biological fluids.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Displets: Resolving Stereo Ambiguities using Object Knowledge
Displets: Resolving Stereo Ambiguities using Object Knowledge

Güney, F., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2015, pages: 4165-4175, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2015 (inproceedings)

Abstract
Stereo techniques have witnessed tremendous progress over the last decades, yet some aspects of the problem still remain challenging today. Striking examples are reflecting and textureless surfaces which cannot easily be recovered using traditional local regularizers. In this paper, we therefore propose to regularize over larger distances using object-category specific disparity proposals (displets) which we sample using inverse graphics techniques based on a sparse disparity estimate and a semantic segmentation of the image. The proposed displets encode the fact that objects of certain categories are not arbitrarily shaped but typically exhibit regular structures. We integrate them as non-local regularizer for the challenging object class 'car' into a superpixel based CRF framework and demonstrate its benefits on the KITTI stereo evaluation.

avg ps

pdf abstract suppmat [BibTex]

pdf abstract suppmat [BibTex]


Object Scene Flow for Autonomous Vehicles
Object Scene Flow for Autonomous Vehicles

Menze, M., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2015, pages: 3061-3070, IEEE, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2015 (inproceedings)

Abstract
This paper proposes a novel model and dataset for 3D scene flow estimation with an application to autonomous driving. Taking advantage of the fact that outdoor scenes often decompose into a small number of independently moving objects, we represent each element in the scene by its rigid motion parameters and each superpixel by a 3D plane as well as an index to the corresponding object. This minimal representation increases robustness and leads to a discrete-continuous CRF where the data term decomposes into pairwise potentials between superpixels and objects. Moreover, our model intrinsically segments the scene into its constituting dynamic components. We demonstrate the performance of our model on existing benchmarks as well as a novel realistic dataset with scene flow ground truth. We obtain this dataset by annotating 400 dynamic scenes from the KITTI raw data collection using detailed 3D CAD models for all vehicles in motion. Our experiments also reveal novel challenges which can't be handled by existing methods.

avg ps

pdf abstract suppmat DOI [BibTex]

pdf abstract suppmat DOI [BibTex]


Joint 3D Object and Layout Inference from a single RGB-D Image
Joint 3D Object and Layout Inference from a single RGB-D Image

(Best Paper Award)

Geiger, A., Wang, C.

In German Conference on Pattern Recognition (GCPR), 9358, pages: 183-195, Lecture Notes in Computer Science, Springer International Publishing, 2015 (inproceedings)

Abstract
Inferring 3D objects and the layout of indoor scenes from a single RGB-D image captured with a Kinect camera is a challenging task. Towards this goal, we propose a high-order graphical model and jointly reason about the layout, objects and superpixels in the image. In contrast to existing holistic approaches, our model leverages detailed 3D geometry using inverse graphics and explicitly enforces occlusion and visibility constraints for respecting scene properties and projective geometry. We cast the task as MAP inference in a factor graph and solve it efficiently using message passing. We evaluate our method with respect to several baselines on the challenging NYUv2 indoor dataset using 21 object categories. Our experiments demonstrate that the proposed method is able to infer scenes with a large degree of clutter and occlusions.

avg ps

pdf suppmat video project DOI [BibTex]

pdf suppmat video project DOI [BibTex]


Discrete Optimization for Optical Flow
Discrete Optimization for Optical Flow

Menze, M., Heipke, C., Geiger, A.

In German Conference on Pattern Recognition (GCPR), 9358, pages: 16-28, Springer International Publishing, 2015 (inproceedings)

Abstract
We propose to look at large-displacement optical flow from a discrete point of view. Motivated by the observation that sub-pixel accuracy is easily obtained given pixel-accurate optical flow, we conjecture that computing the integral part is the hardest piece of the problem. Consequently, we formulate optical flow estimation as a discrete inference problem in a conditional random field, followed by sub-pixel refinement. Naive discretization of the 2D flow space, however, is intractable due to the resulting size of the label set. In this paper, we therefore investigate three different strategies, each able to reduce computation and memory demands by several orders of magnitude. Their combination allows us to estimate large-displacement optical flow both accurately and efficiently and demonstrates the potential of discrete optimization for optical flow. We obtain state-of-the-art performance on MPI Sintel and KITTI.

avg ps

pdf suppmat project DOI [BibTex]

pdf suppmat project DOI [BibTex]


Joint 3D Estimation of Vehicles and Scene Flow
Joint 3D Estimation of Vehicles and Scene Flow

Menze, M., Heipke, C., Geiger, A.

In Proc. of the ISPRS Workshop on Image Sequence Analysis (ISA), 2015 (inproceedings)

Abstract
Three-dimensional reconstruction of dynamic scenes is an important prerequisite for applications like mobile robotics or autonomous driving. While much progress has been made in recent years, imaging conditions in natural outdoor environments are still very challenging for current reconstruction and recognition methods. In this paper, we propose a novel unified approach which reasons jointly about 3D scene flow as well as the pose, shape and motion of vehicles in the scene. Towards this goal, we incorporate a deformable CAD model into a slanted-plane conditional random field for scene flow estimation and enforce shape consistency between the rendered 3D models and the parameters of all superpixels in the image. The association of superpixels to objects is established by an index variable which implicitly enables model selection. We evaluate our approach on the challenging KITTI scene flow dataset in terms of object and scene flow estimation. Our results provide a prove of concept and demonstrate the usefulness of our method.

avg ps

PDF [BibTex]

PDF [BibTex]


no image
Combined FORC and x-ray microscopy study of magnetisation reversal in antidot lattices

Gräfe, J., Haering, F., Stahl, C., Weigand, M., Skripnik, M., Nowak, U., Ziemann, P., Wiedwald, U., Schütz, G., Goering, E.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Local control of domain wall dynamics in ferromagnetic rings

Richter, K., Mawass, M., Krone, A., Krüger, B., Weigand, M., Stoll, H., Schütz, G., Kläui, M.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ultrafast demagnetization after laser pulse irradiation in Ni: Ab-initio electron-phonon scattering and phase space calculations

Illg, C., Haag, M., Fähnle, M.

In Ultrafast Magnetism I. Proceedings of the International Conference UMC 2013, 159, pages: 131-133, Springer Proceedings in Physics, Springer, Strasbourg, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Trajectory generation for multi-contact momentum control

Herzog, A., Rotella, N., Schaal, S., Righetti, L.

In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages: 874-880, IEEE, Seoul, South Korea, 2015 (inproceedings)

Abstract
Simplified models of the dynamics such as the linear inverted pendulum model (LIPM) have proven to perform well for biped walking on flat ground. However, for more complex tasks the assumptions of these models can become limiting. For example, the LIPM does not allow for the control of contact forces independently, is limited to co-planar contacts and assumes that the angular momentum is zero. In this paper, we propose to use the full momentum equations of a humanoid robot in a trajectory optimization framework to plan its center of mass, linear and angular momentum trajectories. The model also allows for planning desired contact forces for each end-effector in arbitrary contact locations. We extend our previous results on linear quadratic regulator (LQR) design for momentum control by computing the (linearized) optimal momentum feedback law in a receding horizon fashion. The resulting desired momentum and the associated feedback law are then used in a hierarchical whole body control approach. Simulation experiments show that the approach is computationally fast and is able to generate plans for locomotion on complex terrains while demonstrating good tracking performance for the full humanoid control.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Humanoid Momentum Estimation Using Sensed Contact Wrenches

Rotella, N., Herzog, A., Schaal, S., Righetti, L.

In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages: 556-563, IEEE, Seoul, South Korea, 2015 (inproceedings)

Abstract
This work presents approaches for the estimation of quantities important for the control of the momentum of a humanoid robot. In contrast to previous approaches which use simplified models such as the Linear Inverted Pendulum Model, we present estimators based on the momentum dynamics of the robot. By using this simple yet dynamically-consistent model, we avoid the issues of using simplified models for estimation. We develop an estimator for the center of mass and full momentum which can be reformulated to estimate center of mass offsets as well as external wrenches applied to the robot. The observability of these estimators is investigated and their performance is evaluated in comparison to previous approaches.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Automotive domain wall propagation in ferromagnetic rings

Richter, K., Mawass, M., Krone, A., Krüger, B., Weigand, M., Schütz, G., Stoll, H., Kläui, M.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
The third dimension: Vortex core reversal by interaction with \textquotesingleflexure modes’

Noske, M., Stoll, H., Fähnle, M., Weigand, M., Dieterle, G., Förster, J., Gangwar, A., Slavin, A., Back, C. H., Schütz, G.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Skyrmions at room temperature in magnetic multilayers

Moreau-Luchaire, C., Reyren, N., Moutafis, C., Sampaio, J., Van Horne, N., Vaz, C. A., Warnicke, P., Garcia, K., Weigand, M., Bouzehouane, K., Deranlot, C., George, J., Raabe, J., Cros, V., Fert, A.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]

2009


no image
Modelling the interplay of central pattern generation and sensory feedback in the neuromuscular control of running

Daley, M., Righetti, L., Ijspeert, A.

In Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology. Annual Main Meeting for the Society for Experimental Biology, 153, Glasgow, Scotland, 2009 (inproceedings)

mg

link (url) DOI [BibTex]

2009


link (url) DOI [BibTex]

2004


no image
Operating system support for interface virtualisation of reconfigurable coprocessors

Vuletic, M., Righetti, L., Pozzi, L., Ienne, P.

In In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, pages: 748-749, IEEE, Paris, France, 2004 (inproceedings)

Abstract
Reconfigurable systems-on-chip (SoC) consist of large field programmable gate arrays (FPGAs) and standard processors. The reconfigurable logic can be used for application-specific coprocessors to speedup execution of applications. The widespread use is limited by the complexity of interfacing software applications with coprocessors. We present a virtualization layer that lowers the interfacing complexity and improves the portability. The layer shifts the burden of moving data between processor and coprocessor from the programmer to the operating system (OS). A reconfigurable SoC running Linux is used to prove the concept.

mg

link (url) DOI [BibTex]

2004


link (url) DOI [BibTex]


no image
High-speed dynamics of magnetization processes in hard magnetic particles and thin platelets

Goll, D., Kronmüller, H.

In Proceedings of the 18th International Workshop on Rare-Earth Magnets and their Applications, pages: 465-469, Laboratoire de Cristallographie/Laboratoire Louis Neel, CNRS, Grenoble, 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
High-speed dynamics of magnetization processes in hard magnetic particles and thin platelets

Goll, D., Kronmüller, H.

In Proceedings of the 18th International Workshop on Rare-Earth Magnets and their Applications, pages: 465-469, Laboratoire de Cristallographie/Laboratoire Louis Neel, CNRS, Grenoble, 2004 (inproceedings)

mms

[BibTex]

[BibTex]