Header logo is



no image
Effect of the soft layer thickness of magnetization reversal process of exchange-spring nanomagnet patterns

Son, K., Schütz, G., Goering, E.

{Current Applied Physics}, 20(4):477-483, Elsevier B.V., Amsterdam, 2020 (article)

mms

DOI [BibTex]


{Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination}
Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination

Guang, Y., Bykova, I., Liu, Y., Yu, G., Goering, E., Weigand, M., Gräfe, J., Kim, S. K., Zhang, J., Zhang, H., Yan, Z., Wan, C., Feng, J., Wang, X., Guo, C., Wei, H., Peng, Y., Tserkovnyak, Y., Han, X., Schütz, G.

{Nature Communications}, 11, Nature Publishing Group, London, 2020 (article)

Abstract
Skyrmions, magnetic textures with topological stability, hold promises for high-density and energy-efficient information storage devices owing to their small size and low driving-current density. Precise creation of a single nanoscale skyrmion is a prerequisite to further understand the skyrmion physics and tailor skyrmion-based applications. Here, we demonstrate the creation of individual skyrmions at zero-field in an exchange-biased magnetic multilayer with exposure to soft X-rays. In particular, a single skyrmion with 100-nm size can be created at the desired position using a focused X-ray spot of sub-50-nm size. This single skyrmion creation is driven by the X-ray-induced modification of the antiferromagnetic order and the corresponding exchange bias. Furthermore, artificial skyrmion lattices with various arrangements can be patterned using X-ray. These results demonstrate the potential of accurate optical control of single skyrmion at sub-100 nm scale. We envision that X-ray could serve as a versatile tool for local manipulation of magnetic orders.

mms

DOI [BibTex]

DOI [BibTex]


{Tuning the magnetic properties of permalloy-based magnetoplasmonic crystals for sensor applications}
Tuning the magnetic properties of permalloy-based magnetoplasmonic crystals for sensor applications

Murzin, D. V., Belyaev, V. K., Groß, F., Gräfe, J., Rivas, M., Rodionova, V. V.

{Japanese Journal of Applied Physics}, 59(SE), IOP Publishing Ltd, Bristol, England, 2020 (article)

Abstract
Miniature magnetic sensors based on magnetoplasmonic crystals (MPlCs) exhibit high sensitivity and high spatial resolution, which can be obtained by the excitation of surface plasmon polaritons. A field dependence of surface plasmon polaritons' enhanced magneto-optical response strongly correlates with magnetic properties of MPlCs that can be tuned by changing spatial parameters, such as the period and height of diffraction gratings and thicknesses of functional layers. This work compares the magnetic properties of MPlCs based on Ni80Fe20 (permalloy) obtained from local (longitudinal magneto-optical Kerr effect) and bulk (vibrating-sample magnetometry) measurements and demonstrates an ability to control sensors' performance through changing the magnetic properties of the MPlCs. The influence of the substrate's geometry (planar or sinusoidal and trapezoidal diffraction grating profiles) and the thickness of the surface layer is examined.

mms

DOI [BibTex]

DOI [BibTex]


no image
Element-resolved study of the evolution of magnetic response in FexN compounds

Chen, Y., Gölden, D., Dirba, I., Huang, M., Gutfleisch, O., Nagel, P., Merz, M., Schuppler, S., Schütz, G., Alff, L., Goering, E.

{Journal of Magnetism and Magnetic Materials}, 498, NH, Elsevier, Amsterdam, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The role of temperature and drive current in skyrmion dynamics

Litzius, K., Leliaert, J., Bassirian, P., Rodrigues, D., Kromin, S., Lemesh, I., Zazvorka, J., Lee, K., Mulkers, J., Kerber, N., Heinze, D., Keil, N., Reeve, R. M., Weigand, M., Van Waeyenberge, B., Schütz, G., Everschor-Sitte, K., Beach, G. S. D., Kläui, M.

{Nature Electronics}, 3(1):30-36, Springer Nature, London, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic flux penetration into micron-sized superconductor/ferromagnet bilayers

Simmendinger, J., Weigand, M., Schütz, G., Albrecht, J.

{Superconductor Science and Technology}, 33(2), IOP Pub., Bristol, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Effective Viscous Damping Enables Morphological Computation in Legged Locomotion
Effective Viscous Damping Enables Morphological Computation in Legged Locomotion

Mo, A., Izzi, F., Haeufle, D. F. B., Badri-Spröwitz, A.

2020 (article) In revision

Abstract
Muscle models and animal observations suggest that physical damping is beneficial for stabilization. Still, only a few implementations of mechanical damping exist in compliant robotic legged locomotion. It remains unclear how physical damping can be exploited for locomotion tasks, while its advantages as sensor-free, adaptive force- and negative work-producing actuators are promising. In a simplified numerical leg model, we studied the energy dissipation from viscous and Coulomb damping during vertical drops with ground-level perturbations. A parallel spring-damper is engaged between touch-down and mid-stance, and its damper auto-disengages during mid-stance and takeoff. Our simulations indicate that an adjustable and viscous damper is desired. In hardware we explored effective viscous damping and adjustability and quantified the dissipated energy. We tested two mechanical, leg-mounted damping mechanisms; a commercial hydraulic damper, and a custom-made pneumatic damper. The pneumatic damper exploits a rolling diaphragm with an adjustable orifice, minimizing Coulomb damping effects while permitting adjustable resistance. Experimental results show that the leg-mounted, hydraulic damper exhibits the most effective viscous damping. Adjusting the orifice setting did not result in substantial changes of dissipated energy per drop, unlike adjusting damping parameters in the numerical model. Consequently, we also emphasize the importance of characterizing physical dampers during real legged impacts to evaluate their effectiveness for compliant legged locomotion.

dlg

link (url) [BibTex]

link (url) [BibTex]


no image
Fabrication and temperature-dependent magnetic properties of large-area L10-FePt/Co exchange-spring magnet nanopatterns

Son, K., Schütz, G.

{Physica E: Low-Dimensional Systems And Nanostructures}, 115, North-Holland, Amsterdam, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Magnetic Anisotropy in Thin Layers of (Mn,Zn)Fe2O4 on SrTiO3 (001)
Magnetic Anisotropy in Thin Layers of (Mn,Zn)Fe2O4 on SrTiO3 (001)

Denecke, R., Welke, M., Huth, P., Gräfe, J., Brachwitz, K., Lorenz, M., Grundmann, M., Ziese, M., Esquinazi, P. D., Goering, E., Schütz, G., Schindler, K., Chassé, A.

physica status solidi (b), n/a(n/a):1900627, 2020 (article)

Abstract
Herein, a ferrimagnetic manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) film with a thickness of 200 nm is prepared without a buffer layer on strontium titanate (001) (SrTiO3) using pulsed laser deposition. Its magnetic properties are investigated using superconducting quantum interference device (SQUID), X-ray absorption spectroscopy with subsequent X-ray magnetic circular dichroism (XMCD) and magneto-optic Kerr effect (MOKE). Hysteresis loops derived from SQUID exhibits bulk-like properties. This can further be confirmed by bulk-like XMCD spectra. In remanent magnetization, an in-plane magnetization with basically no out-of-plane component is found. The magnetic moments derived by the sum rule formalism from the XMCD data are in good agreement to the magnetization observed by SQUID and MOKE. XMCD as well as MOKE reveal an in-plane angular fourfold magnetic anisotropy with the easy direction along [110] for (Mn0.5Zn0.5)Fe2O4 on SrTiO3. The element-specific magnetic moments from XMCD show a stronger contribution of Fe to the anisotropy than of Mn and distinct contributions of the orbital moments.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots
Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots

Drama, Ö., Badri-Spröwitz, A.

Bioinspiration & Biomimetics, 2020 (article)

Abstract
Bipedal animals have diverse morphologies and advanced locomotion abilities. Terrestrial birds, in particular, display agile, efficient, and robust running motion, in which they exploit the interplay between the body segment masses and moment of inertias. On the other hand, most legged robots are not able to generate such versatile and energy-efficient motion and often disregard trunk movements as a means to enhance their locomotion capabilities. Recent research investigated how trunk motions affect the gait characteristics of humans, but there is a lack of analysis across different bipedal morphologies. To address this issue, we analyze avian running based on a spring-loaded inverted pendulum model with a pronograde (horizontal) trunk. We use a virtual point based control scheme and modify the alignment of the ground reaction forces to assess how our control strategy influences the trunk pitch oscillations and energetics of the locomotion. We derive three potential key strategies to leverage trunk pitch motions that minimize either the energy fluctuations of the center of mass or the work performed by the hip and leg. We suggest how these strategies could be used in legged robotics.

dlg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
How to functionalise metal-organic frameworks to enable guest nanocluster embedment

King, J., Zhang, L., Doszczeczko, S., Sambalova, O., Luo, H., Rohman, F., Phillips, O., Borgschulte, A., Hirscher, M., Addicoat, M., Szilágyi, P. A.

{Journal of Materials Chemistry A}, 8(9):4889-4897, Royal Society of Chemistry, Cambridge, UK, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic and microstructural properties of anisotropic MnBi magnets compacted by spark plasma sintering

Chen, Y., Gregori, G., Rheingans, B., Huang, W., Kronmüller, H., Schütz, G., Goering, E.

{Journal of Alloys and Compounds}, 830, Elsevier B.V., Lausanne, Switzerland, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Postural Stability in Human Running with Step-down Perturbations: An Experimental and Numerical Study
Postural Stability in Human Running with Step-down Perturbations: An Experimental and Numerical Study

Oezge Drama, , Johanna Vielemeyer, , Alexander Badri-Spröwitz, , Müller, R.

2020 (article) In revision

Abstract
Postural stability is one of the most crucial elements in bipedal locomotion. Bipeds are dynamically unstable and need to maintain their trunk upright against the rotations induced by the ground reaction forces (GRFs), especially when running. Gait studies report that the GRF vectors focus around a virtual point above the center of mass (VPA), while the trunk moves forward in pitch axis during the stance phase of human running. However, a recent simulation study suggests that a virtual point below the center of mass (VPB) might be present in human running, since a VPA yields backward trunk rotation during the stance phase. In this work, we perform a gait analysis to investigate the existence and location of the VP in human running at 5 m s−1, and support our findings numerically using the spring-loaded inverted pendulum model with a trunk (TSLIP). We extend our analysis to include perturbations in terrain height (visible and camouflaged), and investigate the response of the VP mechanism to step-down perturbations both experimentally and numerically. Our experimental results show that the human running gait displays a VPB of ≈ −30 cm and a forward trunk motion during the stance phase. The camouflaged step-down perturbations affect the location of the VPB. Our simulation results suggest that the VPB is able to encounter the step-down perturbations and bring the system back to its initial equilibrium state.

dlg

link (url) [BibTex]

link (url) [BibTex]


no image
Generation and characterization of focused helical x-ray beams

Loetgering, L., Baluktsian, M., Keskinbora, K., Horstmeyer, R., Wilhein, T., Schütz, G., Eikema, K. S. E., Witte, S.

Science Advances, 6(7), American Association for the Advancement of Science, 2020 (article)

mms

Generation and characterization of focused helical x-ray beams link (url) DOI [BibTex]

Generation and characterization of focused helical x-ray beams link (url) DOI [BibTex]


no image
Materials for hydrogen-based energy storage - past, recent progress and future outlook

Hirscher, M., Yartys, V. A., Baricco, M., Bellosta von Colbe, J., Blanchard, D., Bowman Jr., R. C., Broom, D. P., Buckley, C. E., Chang, F., Chen, P., Cho, Y. W., Crivello, J., Cuevas, F., David, W. I. F., de Jongh, P. E., Denys, R. V., Dornheim, M., Felderhoff, M., Filinchuk, Y., Froudakis, G. E., Grant, D. M., Gray, E. M., Hauback, B. C., He, T., Humphries, T. D., Jensen, T. R., Kim, S., Kojima, Y., Latroche, M., Li, H., Lotostskyy, M. V., Makepeace, J. W., M\oller, K. T., Naheed, L., Ngene, P., Noréus, D., Nyg\aard, M. M., Orimo, S., Paskevicius, M., Pasquini, L., Ravnsbaek, D. B., Sofianos, M. V., Udovic, T. J., Vegge, T., Walker, G. S., Webb, C. J., Weidenthaler, C., Zlotea, C.

{Journal of Alloys and Compounds}, 827, Elsevier B.V., Lausanne, Switzerland, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


{Thermal nucleation and high-resolution imaging of submicrometer magnetic bubbles in thin thulium iron garnet films with perpendicular anisotropy}
Thermal nucleation and high-resolution imaging of submicrometer magnetic bubbles in thin thulium iron garnet films with perpendicular anisotropy

Büttner, F., Mawass, M. A., Bauer, J., Rosenberg, E., Caretta, L., Avci, C. O., Gräfe, J., Finizio, S., Vaz, C. A. F., Novakovic, N., Weigand, M., Litzius, K., Förster, J., Träger, N., Groß, F., Suzuki, D., Huang, M., Bartell, J., Kronast, F., Raabe, J., Schütz, G., Ross, C. A., Beach, G. S. D.

{Physical Review Materials}, 4(1), American Physical Society, College Park, MD, 2020 (article)

Abstract
Ferrimagnetic iron garnets are promising materials for spintronics applications, characterized by ultralow damping and zero current shunting. It has recently been found that few nm-thick garnet films interfaced with a heavy metal can also exhibit sizable interfacial spin-orbit interactions, leading to the emergence, and efficient electrical control, of one-dimensional chiral domain walls. Two-dimensional bubbles, by contrast, have so far only been confirmed in micrometer-thick films. Here, we show by high resolution scanning transmission x-ray microscopy and photoemission electron microscopy that submicrometer bubbles can be nucleated and stabilized in ∼25-nm-thick thulium iron garnet films via short heat pulses generated by electric current in an adjacent Pt strip, or by ultrafast laser illumination. We also find that quasistatic processes do not lead to the formation of a bubble state, suggesting that the thermodynamic path to reaching that state requires transient dynamics. X-ray imaging reveals that the bubbles have Bloch-type walls with random chirality and topology, indicating negligible chiral interactions at the garnet film thickness studied here. The robustness of thermal nucleation and the feasibility demonstrated here to image garnet-based devices by x-rays both in transmission geometry and with sensitivity to the domain wall chirality are critical steps to enabling the study of small spin textures and dynamics in perpendicularly magnetized thin-film garnets.

mms

DOI [BibTex]

DOI [BibTex]


{Real-space imaging of confined magnetic skyrmion tubes}
Real-space imaging of confined magnetic skyrmion tubes

Birch, M. T., Cortés-Ortuño, D., Turnbull, L. A., Wilson, M. N., Groß, F., Träger, N., Laurenson, A., Bukin, N., Moody, S. H., Weigand, M., Schütz, G., Popescu, H., Fan, R., Steadman, P., Verezhak, J. A. T., Balakrishnan, G., Loudon, J. C., Twitchett-Harrison, A. C., Hovorka, O., Fangohr, H., Ogrin, F., Gräfe, J., Hatton, P. D.

Nature Communications, 11, pages: 1726, 2020 (article)

Abstract
Magnetic skyrmions are topologically nontrivial particles with a potential application as information elements in future spintronic device architectures. While they are commonly portrayed as two dimensional objects, in reality magnetic skyrmions are thought to exist as elongated, tube-like objects extending through the thickness of the host material. The study of this skyrmion tube state (SkT) is vital for furthering the understanding of skyrmion formation and dynamics for future applications. However, direct experimental imaging of skyrmion tubes has yet to be reported. Here, we demonstrate the real-space observation of skyrmion tubes in a lamella of FeGe using resonant magnetic x-ray imaging and comparative micromagnetic simulations, confirming their extended structure. The formation of these structures at the edge of the sample highlights the importance of confinement and edge effects in the stabilisation of the SkT state, opening the door to further investigation into this unexplored dimension of the skyrmion spin texture.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Room temperature ferromagnetism driven by Ca-doped BiFeO3 multiferroic functional material

Marzouk, M., Hashem, H. M., Soltan, S., Ramadan, A. A.

{Journal of Materials Science: Materials in Electronics}, 31(7):5599-5607, Springer, Norwell, MA, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]

2015


no image
Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric metod, and analytical models

Kloutse, A. F., Zacharia, R., Cossement, D., Chahine, R., Balderas-Xicohténcatl, R., Oh, H., Streppel, B., Schlichtenmayer, M., Hirscher, M.

{Applied Physics A}, 121(4):1417-1424, Springer-Verlag Heidelberg, Heidelberg, 2015 (article)

mms

DOI [BibTex]

2015


DOI [BibTex]


{XMCD studies of thin Co films on BaTiO3}
XMCD studies of thin Co films on BaTiO3

Welke, M., Gräfe, J., Govind, R. K., Babu, V. H., Trautmann, M., Schindler, K., Denecke, R.

{Journal of Physics: Condensed Matter}, 27(32), IOP Publishing, Bristol, UK, 2015 (article)

Abstract
Different layer thicknesses of cobalt ranging from 2.6 Å (1.5 ML) up to 55 Å (30.5 ML) deposited on ferroelectric BaTiO3 have been studied regarding their magnetic behavior. The layers have been characterized using XMCD spectroscopy at remanent magnetization. After careful data analysis the magnetic moments of the cobalt could be determined using the sum rule formalism. There is a sudden and abrupt onset in magnetism starting at thicknesses of 9 Å (5 ML) of cobalt for measurements at 120 K and of 10 Å (5.5 ML) if measured at room temperature. Initial island growth and subsequent coalescence of Co on BaTiO3 is suggested to explain the sudden onset. In that context, no magnetically dead layers are observed.

mms

DOI [BibTex]

DOI [BibTex]


Exciting Engineered Passive Dynamics in a Bipedal Robot
Exciting Engineered Passive Dynamics in a Bipedal Robot

Renjewski, D., Spröwitz, A., Peekema, A., Jones, M., Hurst, J.

{IEEE Transactions on Robotics and Automation}, 31(5):1244-1251, IEEE, New York, NY, 2015 (article)

Abstract
A common approach in designing legged robots is to build fully actuated machines and control the machine dynamics entirely in soft- ware, carefully avoiding impacts and expending a lot of energy. However, these machines are outperformed by their human and animal counterparts. Animals achieve their impressive agility, efficiency, and robustness through a close integration of passive dynamics, implemented through mechanical components, and neural control. Robots can benefit from this same integrated approach, but a strong theoretical framework is required to design the passive dynamics of a machine and exploit them for control. For this framework, we use a bipedal spring–mass model, which has been shown to approximate the dynamics of human locomotion. This paper reports the first implementation of spring–mass walking on a bipedal robot. We present the use of template dynamics as a control objective exploiting the engineered passive spring–mass dynamics of the ATRIAS robot. The results highlight the benefits of combining passive dynamics with dynamics-based control and open up a library of spring–mass model-based control strategies for dynamic gait control of robots.

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


{Preparation and characterisation of epitaxial Pt/Cu/FeMn/Co thin films on (100)-oriented MgO single crystals}
Preparation and characterisation of epitaxial Pt/Cu/FeMn/Co thin films on (100)-oriented MgO single crystals

Schmidt, M., Gräfe, J., Audehm, P., Phillipp, F., Schütz, G., Goering, E.

{Physica Status Solidi A}, 212(10):2114-2123, Wiley-VCH, Weinheim, 2015 (article)

Abstract
Different layer thicknesses of cobalt ranging from 2.6 Å (1.5 ML) up to 55 Å (30.5 ML) deposited on ferroelectric BaTiO3 have been studied regarding their magnetic behavior. The layers have been characterized using XMCD spectroscopy at remanent magnetization. After careful data analysis the magnetic moments of the cobalt could be determined using the sum rule formalism. There is a sudden and abrupt onset in magnetism starting at thicknesses of 9 Å (5 ML) of cobalt for measurements at 120 K and of 10 Å (5.5 ML) if measured at room temperature. Initial island growth and subsequent coalescence of Co on BaTiO3 is suggested to explain the sudden onset. In that context, no magnetically dead layers are observed.

mms

DOI [BibTex]

DOI [BibTex]


{Perpendicular magnetisation from in-plane fields in nano-scaled antidot lattices}
Perpendicular magnetisation from in-plane fields in nano-scaled antidot lattices

Gräfe, J., Haering, F., Tietze, T., Audehm, P., Weigand, M., Wiedwald, U., Ziemann, P., Gawronski, P., Schütz, G., Goering, E. J.

{Nanotechnology}, 26(22), IOP Pub., Bristol, UK, 2015 (article)

Abstract
Investigations of geometric frustrations in magnetic antidot lattices have led to the observation of interesting phenomena like spin-ice and magnetic monopoles. By using highly focused magneto-optical Kerr effect measurements and x-ray microscopy with magnetic contrast we deduce that geometrical frustration in these nanostructured thin film systems also leads to an out-of-plane magnetization from a purely in-plane applied magnetic field. For certain orientations of the antidot lattice, formation of perpendicular magnetic domains has been found with a size of several μm that may be used for an in-plane/out-of-plane transducer.

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Fabrication and X-ray testing of true kinoform lenses with high efficiencies

Keskinbora, K., Sanli, U., Grévent, C., Schütz, G.

{Proceedings of SPIE}, 9592, SPIE, Bellingham, Washington, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Time-resolved imaging of pulse-induced magnetization reversal with a microwave assist field

Rao, S., Rhensius, J., Bisig, A., Mawass, M.-A., Weigand, M., Kläui, M., Bhatia, C. S., Yang, H.

{Scientific Reports}, 5, Nature Publishing Group, London, UK, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Low temperature X-ray imaging of magnetic flux patterns in high temperature superconductors

Stahl, C., Ruoß, S., Weigand, M., Bechtel, M., Schütz, G., Albrecht, J.

{Journal of Applied Physics}, 117(17), AIP Publishing, New York, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Formation of a quasi-solid structure by intercalated noble gas atoms in pores of CuI-MFU-4l metal-organic framework

Magdysyuk, O. V., Denysenko, D., Weinrauch, I., Volkmer, D., Hirscher, M., Dinnebier, R. E.

{Chemical Communications}, 51(4):714-717, Royal Society of Chemistry, Cambridge, UK, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Burst-mode manipulation of magnonic vortex crystals

Hänze, M., Adolff, C. F., Weigand, M., Meier, G.

{Physical Review B}, 91(10), American Physical Society, Woodbury, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Selectable nanopattern arrays for nanolithographic imprint and etch-mask applications

Jeong, H., Mark, A. G., Lee, T., Son, K., Chen, W., Alarcón-Correa, M., Kim, I., Schütz, G., Fischer, P.

{Advanced Science}, 2(2), Wiley-VCH, Weinheim, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Grain boundaries as a source of ferromagnetism and increased solubility of Ni in nanograined ZnO

Straumal, B. B., Mazilkin, A. A., Protasova, S. G., Stakhanova, S. V., Straumal, P. B., Bulatov, M. F., Schütz, G., Tietze, T., Goering, E., Baretzky, B.

{Reviews on Advanced Materials Science}, 41, pages: 61-71, 2015 (article)

mms

[BibTex]

[BibTex]


no image
Gyrational modes of benzenelike magnetic vortex molecules

Adolff, C. F., Hänze, M., Pues, M., Weigand, M., Meier, G.

{Physical Review B}, 92(2), American Physical Society, Woodbury, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
"Job-Sharing" storage of hydrogen in Ru/Li2O nanocomposites

Fu, L., Tang, K., Oh, H., Kandavel, M., Bräuniger, T., Vinod Chandran, C., Menzel, A., Hirscher, M., Samuelis, D., Maier, J.

{Nano Letters}, 15(6):4170-4175, American Chemical Society, Washington, DC, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Overview of the multilayer-Fresnel zone plate and the kinoform lens development at MPI for Intelligent Systems

Sanli, U., Keskinbora, K., Grévent, C., Schütz, G.

{Proceedings of SPIE}, 9510, SPIE, Bellingham, Washington, 2015 (article)

mms

DOI [BibTex]


no image
Transition matrix elements for electron-phonon scattering: Phenomenological theory and ab initio electron theory

Illg, C., Haag, M., Müller, B. Y., Czycholl, G., Fähnle, M.

{Physical Review B}, 92(19), American Physical Society, Woodbury, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Phase evolution in single-crystalline LiFePO4 followed by in situ scanning X-ray microscopy of a micrometre-sized battery

Ohmer, N., Fenk, B., Samuelis, D., Chen, C., Maier, J., Weigand, M., Goering, E., Schütz, G.

{Nature Communications}, 6, Nature Publishing Group, London, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Nitrogen-rich covalent triazine frameworks as high-performance platforms for selective carbon capture and storage

Hug, S., Stegbauer, L., Oh, H., Hirscher, M., Lotsch, B. V.

{Chemistry of Materials}, 27(23):8001-8010, American Chemical Society, Washington, D.C., 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Focused ion beam micromachining enables novel optics for X-ray microscopy

Keskinbora, K., Sanli, U., Grévent, C., Hirscher, M., Schütz, G.

{Microscopy and Microanalysis}, 21(Suppl 3):1983-1984, Springer-Verlag New York, New York, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Interfacial dominated ferromagnetism in nanograined ZnO: a \muSR and DFT study

Tietze, T., Audehm, P., Chen, Y., Schütz, G., Straumal, B. B., Protasova, S. G., Mazilkin, A. A., Straumal, P. B., Prokscha, T., Luetkens, H., Salman, Z., Suter, A., Baretzky, B., Fink, K., Wenzel, W., Danilov, D., Goering, E.

{Scientific Reports}, 5, pages: 8871-8876, Nature Publishing Group, London, UK, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Preparation of a ferromagnetic barrier in YBa2Cu3O7-delta thinner than the coherence length

Soltan, S., Albrecht, J., Goering, E., Schütz, G., Mustafa, L., Keimer, B., Habermeier, H.

{Journal of Applied Physics}, 118(22), AIP Publishing, New York, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Microanalytical methods for in-situ high-resolution analysis of rock varnish at the micrometer to nanometer scale

Macholdt, D. S., Jochum, K. P., Pöhlker, C., Stoll, B., Weis, U., Weber, B., Müller, M., Kapl, M., Buhre, S., Kilcoyne, A. L. D., Weigand, M., Scholz, D., Al-Amri, A. M., Andreae, M. O.

{Chemical Geology}, 411, pages: 57-68, Elsevier, Amsterdam, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

Mikhailov, E. F., Mironov, G. N., Pöhlker, C., Chi, X., Krüger, M., Shiraiwa, M., Förster, J., Pöschl, U., Vlasenko, S. S., Ryshkevich, T. I., Weigand, M., Kilcoyne, A. L. D., Andreae, M.

{Atmospheric Chemistry and Physics}, 15(15):8847-8869, European Geosciences Union, Katlenburg-Lindau, Germany, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Orbital reflectometry of PrNiO3/PrAlO3 superlattices

Wu, M., Benckiser, E., Audehm, P., Goering, E., Wochner, P., Christiani, G., Logvenov, G., Habermeier, H., Keimer, B.

{Physical Review B}, 91(19), American Physical Society, Woodbury, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Dynamic domain wall chirality rectification by rotating magnetic fields

Bisig, A., Mawass, M., Stärk, M., Moutafis, C., Rhensius, J., Heidler, J., Gliga, S., Weigand, M., Tyliszczak, T., Van Waeyenberge, B., Stoll, H., Schütz, G., Kläui, M.

{Applied Physics Letters}, 106(12), American Institute of Physics, Melville, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Imaging spin dynamics on the nanoscale using X-ray microscopy

Stoll, H., Noske, M., Weigand, M., Richter, K., Krüger, B., Reeve, R. M., Hänze, M., Adolff, C. F., Stein, F., Meier, G., Kläui, M., Schütz, G.

{Frontiers in Physics}, 3, Frontiers Media, Lausanne, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unique high-temperature performance of highly consensed MnBi permanent magnets

Chen, Y., Gregori, G., Leineweber, A., Qu, F., Chen, C., Tietze, T., Kronmüller, H., Schütz, G., Goering, E.

{Scripta Materialia}, 107, pages: 131-135, Pergamon, Tarrytown, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Multilayer Fresnel zone plates for X-ray microscopy

Sanli, U. T., Keskinbora, K., Grévent, C., Szeghalmi, A., Knez, M., Schütz, G.

{Microscopy and Microanalysis}, 21(Suppl 3):1987-1988, Springer-Verlag New York, New York, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Electrical determination of vortex state in submicron magnetic elements

Gangwar, A., Bauer, H. G., Chauleau, J., Noske, M., Weigand, M., Stoll, H., Schütz, G., Back, C. H.

{Physical Review B}, 91(9), American Physical Society, Woodbury, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Mechanisms for the symmetric and antisymmetric switching of a magnetic vortex core: Differences and common aspects

Noske, M., Stoll, H., Fähnle, M., Hertel, R., Schütz, G.

{Physical Review B}, 91(1), American Physical Society, Woodbury, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
High resolution, high efficiency mulitlayer Fresnel zone plates for soft and hard X-rays

Sanli, U., Keskinbora, K., Gregorczyk, K., Leister, J., Teeny, N., Grévent, C., Knez, M., Schütz, G.

{Proceedings of SPIE}, 9592, SPIE, Bellingham, Washington, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]