Header logo is


2019


no image
Convolutional neural networks: A magic bullet for gravitational-wave detection?

Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.

Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)

ei

link (url) DOI [BibTex]

2019


link (url) DOI [BibTex]


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
X-ray Optics Fabrication Using Unorthodox Approaches

Sanli, U., Baluktsian, M., Ceylan, H., Sitti, M., Weigand, M., Schütz, G., Keskinbora, K.

Bulletin of the American Physical Society, APS, 2019 (article)

mms pi

[BibTex]

[BibTex]


no image
Nanoscale detection of spin wave deflection angles in permalloy

Gross, F., Träger, N., Förster, J., Weigand, M., Schütz, G., Gräfe, J.

{Applied Physics Letters}, 114(1), American Institute of Physics, Melville, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T

Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.

Magnetic Resonance in Medicine, 2019, (Early View) (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Generation of switchable singular beams with dynamic metasurfaces

Yu, P., Li, J., Li, X., Schütz, G., Hirscher, M., Zhang, S., Liu, N.

{ACS Nano}, 13(6):7100-7106, American Chemical Society, Washington, DC, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Extracting the dynamic magnetic contrast in time-resolved X-ray transmission microscopy

Schaffers, T., Feggeler, T., Pile, S., Meckenstock, R., Buchner, M., Spoddig, D., Ney, V., Farle, M., Wende, H., Wintz, S., Weigand, M., Ohldag, H., Ollefs, K, Ney, A.

{Nanomaterials}, 9(7), MDPI, Basel, Schweiz, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
gFORC: A graphics processing unit accelerated first-order reversal-curve calculator

Groß, F., Mart\’\inez-Garc\’\ia, J. C., Ilse, S. E., Schütz, G., Goering, E., Rivas, M., Gräfe, J.

{Journal of Applied Physics}, 126(16), AIP Publishing, New York, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Piezo-electrical control of gyration dynamics of magnetic vortices

Filianina, M., Baldrati, L., Hajiri, T., Litzius, K., Foerster, M., Aballe, L., Kläui, M.

{Applied Physics Letters}, 115(6), American Institute of Physics, Melville, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 2019, PNAS published ahead of print January 22, 2019 (article)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


Thumb xl screenshot 2019 03 25 at 14.29.22
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

ei

Arxiv Video [BibTex]


no image
Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths

Dieterle, G., Förster, J., Stoll, H., Semisalova, A. S., Finizio, S., Gangwar, A., Weigand, M., Noske, M., Fähnle, M., Bykova, I., Gräfe, J., Bozhko, D. A., Musiienko-Shmarova, H. Y., Tiberkevich, V., Slavin, A. N., Back, C. H., Raabe, J., Schütz, G., Wintz, S.

{Physical Review Letters}, 122(11), American Physical Society, Woodbury, N.Y., 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Reprogrammability and Scalability of Magnonic Fibonacci Quasicrystals

Lisiecki, F., Rychły, J., Kuświk, P., Głowiński, H., Kłos, J. W., Groß, F., Bykova, I., Weigand, M., Zelent, M., Goering, E. J., Schütz, G., Gubbiotti, G., Krawczyk, M., Stobiecki, F., Dubowik, J., Gräfe, J.

Physical Review Applied, 11, pages: 054003, 2019 (article)

Abstract
Magnonic crystals are systems that can be used to design and tune the dynamic properties of magnetization. Here, we focus on one-dimensional Fibonacci magnonic quasicrystals. We confirm the existence of collective spin waves propagating through the structure as well as dispersionless modes; the reprogammability of the resonance frequencies, dependent on the magnetization order; and dynamic spin-wave interactions. With the fundamental understanding of these properties, we lay a foundation for the scalable and advanced design of spin-wave band structures for spintronic, microwave, and magnonic applications.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Coordinated molecule-modulated magnetic phase with metamagnetism in metal-organic frameworks

Son, K., Kim, J. Y., Schütz, G., Kang, S. G., Moon, H. R., Oh, H.

{Inorganic Chemistry}, 58(14):8895-8899, American Chemical Society, Washington, DC, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Scaling of intrinsic domain wall magnetoresistance with confinement in electromigrated nanocontacts

Reeve, R. M., Loescher, A., Kazemi, H., Dupé, B., Mawass, M., Winkler, T., Schönke, D., Miao, J., Litzius, K., Sedlmayr, N., Schneider, I., Sinova, J., Eggert, S., Kläui, M.

{Physical Review B}, 99(21), American Physical Society, Woodbury, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Inferring causation from time series with perspectives in Earth system sciences

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M. S. B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.

Nature Communications, 2019 (article) In revision

ei

[BibTex]

[BibTex]


no image
Magnons in a Quasicrystal: Propagation, Extinction, and Localization of Spin Waves in Fibonacci Structures

Lisiecki, F., Rychły, J., Kuświk, P., Głowiński, H., Kłos, J. W., Groß, F., Träger, N., Bykova, I., Weigand, M., Zelent, M., Goering, E. J., Schütz, G., Krawczyk, M., Stobiecki, F., Dubowik, J., Gräfe, J.

Physical Review Applied, 11, pages: 054061, 2019 (article)

Abstract
Magnonic quasicrystals exceed the possibilities of spin-wave (SW) manipulation offered by regular magnonic crystals, because of their more complex SW spectra with fractal characteristics. Here, we report the direct x-ray microscopic observation of propagating SWs in a magnonic quasicrystal, consisting of dipolar coupled permalloy nanowires arranged in a one-dimensional Fibonacci sequence. SWs from the first and second band as well as evanescent waves from the band gap between them are imaged. Moreover, additional mini band gaps in the spectrum are demonstrated, directly indicating an influence of the quasiperiodicity of the system. Finally, the localization of SW modes within the Fibonacci crystal is shown. The experimental results are interpreted using numerical calculations and we deduce a simple model to estimate the frequency position of the magnonic gaps in quasiperiodic structures. The demonstrated features of SW spectra in one-dimensional magnonic quasicrystals allow utilizing this class of metamaterials for magnonics and make them an ideal basis for future applications.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Prototyping Micro- and Nano-Optics with Focused Ion Beam Lithography

Keskinbora, K.

SL48, pages: 46, SPIE.Spotlight, SPIE Press, Bellingham, WA, 2019 (book)

mms

DOI [BibTex]

DOI [BibTex]


no image
Structural and magnetic properties of FePt-Tb alloy thin films

Schmidt, N. Y., Laureti, S., Radu, F., Ryll, H., Luo, C., d\textquotesingleAcapito, F., Tripathi, S., Goering, E., Weller, D., Albrecht, M.

{Physical Review B}, 100(6), American Physical Society, Woodbury, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Tunable perpendicular exchange bias in oxide heterostructures

Kim, G., Khaydukov, Y., Bluschke, M., Suyolcu, Y. E., Christiani, G., Son, K., Dietl, C., Keller, T., Weschke, E., van Aken, P. A., Logvenov, G., Keimer, B.

{Physical Review Materials}, 3(8), American Physical Society, College Park, MD, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Interpreting first-order reversal curves beyond the Preisach model: An experimental permalloy microarray investigation

Groß, F., Ilse, S. E., Schütz, G., Gräfe, J., Goering, E.

{Physical Review B}, 99(6), American Physical Society, Woodbury, NY, 2019 (article)

mms

DOI [BibTex]


no image
Bistability of magnetic states in Fe-Pd nanocap arrays

Aravind, P. B., Heigl, M., Fix, M., Groß, F., Gräfe, J., Mary, A., Rajgowrav, C. R., Krupiński, M., Marszałek, M., Thomas, S., Anantharaman, M. R., Albrecht, M.

Nanotechnology, 30, pages: 405705, 2019 (article)

Abstract
Magnetic bistability between vortex and single domain states in nanostructures are of great interest from both fundamental and technological perspectives. In soft magnetic nanostructures, the transition from a uniform collinear magnetic state to a vortex state (or vice versa) induced by a magnetic field involves an energy barrier. If the thermal energy is large enough for overcoming this energy barrier, magnetic bistability with a hysteresis-free switching occurs between the two magnetic states. In this work, we tune this energy barrier by tailoring the composition of FePd alloys, which were deposited onto self-assembled particle arrays forming magnetic vortex structures on top of the particles. The bifurcation temperature, where a hysteresis-free transition occurs, was extracted from the temperature dependence of the annihilation and nucleation field which increases almost linearly with Fe content of the magnetic alloy. This study provides insights into the magnetization reversal process associated with magnetic bistability, which allows adjusting the bifurcation temperature range by the material properties of the nanosystem.

mms

link (url) [BibTex]

link (url) [BibTex]


no image
An international laboratory comparison study of volumetric and gravimetric hydrogen adsorption measurements

Hurst, K. E., Gennett, T., Adams, J., Allendorf, M. D., Balderas-Xicohténcatl, R., Bielewski, M., Edwards, B., Espinal, L., Fultz, B., Hirscher, M., Hudson, M. S. L., Hulvey, Z., Latroche, M., Liu, D., Kapelewski, M., Napolitano, E., Perry, Z. T., Purewal, J., Stavila, V., Veenstra, M., White, J. L., Yuan, Y., Zhou, H., Zlotea, C., Parilla, P.

{ChemPhysChem}, 20(15):1997-2009, Wiley-VCH, Weinheim, Germany, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Superior magnetic performance in FePt L10 nanomaterials

Son, K., Ryu, G. H., Jeong, H., Fink, L., Merz, M., Nagel, P., Schuppler, S., Richter, G., Goering, E., Schütz, G.

{Small}, 15(34), Wiley, Weinheim, Germany, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Vizualizing nanoscale spin waves using MAXYMUS

Gräfe, J., Weigand, M., Van Waeyenberge, B., Gangwar, A., Groß, F., Lisiecki, F., Rychly, J., Stoll, H., Träger, N., Förster, J., Stobiecki, F., Dubowik, J., Klos, H., Krwaczyk, M., Back, C. H., Goering, E. J., Schütz, G.

{Proceedings of SPIE}, 11090, SPIE, Bellingham, Washington, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Systematic experimental study on quantum sieving of hydrogen isotopes in metal-amide-imidazolate frameworks with narrow 1-D channels

Mondal, S. S., Kreuzer, A., Behrens, K., Schütz, G., Holdt, H., Hirscher, M.

{ChemPhysChem}, 20(10):1311-1315, Wiley-VCH, Weinheim, Germany, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The route to supercurrent transparent ferromagnetic barriers in superconducting matrix

Ivanov, Y. P., Soltan, S., Albrecht, J., Goering, E., Schütz, G., Zhang, Z., Chuvilin, A.

{ACS Nano}, 13(5):5655-5661, American Chemical Society, Washington, DC, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces

Klus, S., Schuster, I., Muandet, K.

Journal of Nonlinear Science, 2019, First Online: 21 August 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Artifacts from manganese reduction in rock samples prepared by focused ion beam (FIB) slicing for X-ray microspectroscopy

Macholdt, D. S., Förster, J., Müller, M., Weber, B., Kappl, M., Kilcoyne, A. L. D., Weigand, M., Leitner, J., Jochum, K. P., Pöhlker, C., Andreae, M. O.

{Geoscientific instrumentation, methods and data systems}, 8(1):97-111, Copernicus Publ., Göttingen, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic field dependence of mangetotransport properties of MgB2/CrO2 bilayer thin films

Alzayed, N. S., Shahabuddin, M., Ramey, S. M., Soltan, S.

{Journal of Superconductivity and Novel Magnetism}, 32(8):2447-2455, Springer Science + Business Media B.V., New York, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Mixed-state magnetotransport properties of MgB2 thin film prepared by pulsed laser deposition on an Al2O3 substrate

Alzayed, N. S., Shahabuddin, M., Ramey, S. M., Soltan, S.

{Journal of Materials Science: Materials in Electronics}, 30(2):1547-1552, Springer, Norwell, MA, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comparison of theories of fast and ultrafast magnetization dynamics

Fähnle, M.

{Journal of Magnetism and Magnetic Materials}, 469, pages: 28-29, NH, Elsevier, Amsterdam, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Concepts for improving hydrogen storage in nanoporous materials

Broom, D. P., Webb, C. J., Fanourgakis, G. S., Froudakis, G. E., Trikalitis, P. N., Hirscher, M.

{International Journal of Hydrogen Energy}, 44(15):7768-7779, Elsevier, Amsterdam, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Controlling dislocation nucleation-mediatd plasticity in nanostructures via surface modification

Shin, J., Chen, L. Y., Sanli, U. T., Richter, G., Labat, S., Richard, M., Cornelius, T., Thomas, O., Gianola, D. S.

{Acta Materialia}, 166, pages: 572-586, Elsevier Science, Kidlington, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Reprogrammability and scalability of magnonic Fibonacci quasicrystals

Lisiecki, F., Rychly, J., Kuswik, P., Glowinski, H., Klos, J. W., Groß, F., Bykova, I., Weigand, M., Zelent, M., Goering, E. J., Schütz, G., Gubbiotti, G., Krawczyk, M., Stobiecki, F., Dubowik, J., Gräfe, J.

{Physical Review Applied}, 11(5), American Physical Society, College Park, Md. [u.a.], 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]

2013


no image
Correlation of Simultaneously Acquired Diffusion-Weighted Imaging and 2-Deoxy-[18F] fluoro-2-D-glucose Positron Emission Tomography of Pulmonary Lesions in a Dedicated Whole-Body Magnetic Resonance/Positron Emission Tomography System

Schmidt, H., Brendle, C., Schraml, C., Martirosian, P., Bezrukov, I., Hetzel, J., Müller, M., Sauter, A., Claussen, C., Pfannenberg, C., Schwenzer, N.

Investigative Radiology, 48(5):247-255, May 2013 (article)

ei

Web [BibTex]

2013


Web [BibTex]


no image
Replacing Causal Faithfulness with Algorithmic Independence of Conditionals

Lemeire, J., Janzing, D.

Minds and Machines, 23(2):227-249, May 2013 (article)

Abstract
Independence of Conditionals (IC) has recently been proposed as a basic rule for causal structure learning. If a Bayesian network represents the causal structure, its Conditional Probability Distributions (CPDs) should be algorithmically independent. In this paper we compare IC with causal faithfulness (FF), stating that only those conditional independences that are implied by the causal Markov condition hold true. The latter is a basic postulate in common approaches to causal structure learning. The common spirit of FF and IC is to reject causal graphs for which the joint distribution looks ‘non-generic’. The difference lies in the notion of genericity: FF sometimes rejects models just because one of the CPDs is simple, for instance if the CPD describes a deterministic relation. IC does not behave in this undesirable way. It only rejects a model when there is a non-generic relation between different CPDs although each CPD looks generic when considered separately. Moreover, it detects relations between CPDs that cannot be captured by conditional independences. IC therefore helps in distinguishing causal graphs that induce the same conditional independences (i.e., they belong to the same Markov equivalence class). The usual justification for FF implicitly assumes a prior that is a probability density on the parameter space. IC can be justified by Solomonoff’s universal prior, assigning non-zero probability to those points in parameter space that have a finite description. In this way, it favours simple CPDs, and therefore respects Occam’s razor. Since Kolmogorov complexity is uncomputable, IC is not directly applicable in practice. We argue that it is nevertheless helpful, since it has already served as inspiration and justification for novel causal inference algorithms.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
What can neurons do for their brain? Communicate selectivity with bursts

Balduzzi, D., Tononi, G.

Theory in Biosciences , 132(1):27-39, Springer, March 2013 (article)

Abstract
Neurons deep in cortex interact with the environment extremely indirectly; the spikes they receive and produce are pre- and post-processed by millions of other neurons. This paper proposes two information-theoretic constraints guiding the production of spikes, that help ensure bursting activity deep in cortex relates meaningfully to events in the environment. First, neurons should emphasize selective responses with bursts. Second, neurons should propagate selective inputs by burst-firing in response to them. We show the constraints are necessary for bursts to dominate information-transfer within cortex, thereby providing a substrate allowing neurons to distribute credit amongst themselves. Finally, since synaptic plasticity degrades the ability of neurons to burst selectively, we argue that homeostatic regulation of synaptic weights is necessary, and that it is best performed offline during sleep.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Apprenticeship Learning with Few Examples

Boularias, A., Chaib-draa, B.

Neurocomputing, 104, pages: 83-96, March 2013 (article)

Abstract
We consider the problem of imitation learning when the examples, provided by an expert human, are scarce. Apprenticeship learning via inverse reinforcement learning provides an efficient tool for generalizing the examples, based on the assumption that the expert's policy maximizes a value function, which is a linear combination of state and action features. Most apprenticeship learning algorithms use only simple empirical averages of the features in the demonstrations as a statistics of the expert's policy. However, this method is efficient only when the number of examples is sufficiently large to cover most of the states, or the dynamics of the system is nearly deterministic. In this paper, we show that the quality of the learned policies is sensitive to the error in estimating the averages of the features when the dynamics of the system is stochastic. To reduce this error, we introduce two new approaches for bootstrapping the demonstrations by assuming that the expert is near-optimal and the dynamics of the system is known. In the first approach, the expert's examples are used to learn a reward function and to generate furthermore examples from the corresponding optimal policy. The second approach uses a transfer technique, known as graph homomorphism, in order to generalize the expert's actions to unvisited regions of the state space. Empirical results on simulated robot navigation problems show that our approach is able to learn sufficiently good policies from a significantly small number of examples.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl thumb hennigk2012 2
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

Journal of Machine Learning Research, 14(1):843-865, March 2013 (article)

Abstract
Four decades after their invention, quasi-Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

ei ps pn

website+code pdf link (url) [BibTex]

website+code pdf link (url) [BibTex]


no image
Regional effects of magnetization dispersion on quantitative perfusion imaging for pulsed and continuous arterial spin labeling

Cavusoglu, M., Pohmann, R., Burger, H. C., Uludag, K.

Magnetic Resonance in Medicine, 69(2):524-530, Febuary 2013 (article)

Abstract
Most experiments assume a global transit delay time with blood flowing from the tagging region to the imaging slice in plug flow without any dispersion of the magnetization. However, because of cardiac pulsation, nonuniform cross-sectional flow profile, and complex vessel networks, the transit delay time is not a single value but follows a distribution. In this study, we explored the regional effects of magnetization dispersion on quantitative perfusion imaging for varying transit times within a very large interval from the direct comparison of pulsed, pseudo-continuous, and dual-coil continuous arterial spin labeling encoding schemes. Longer distances between tagging and imaging region typically used for continuous tagging schemes enhance the regional bias on the quantitative cerebral blood flow measurement causing an underestimation up to 37% when plug flow is assumed as in the standard model.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
The multivariate Watson distribution: Maximum-likelihood estimation and other aspects

Sra, S., Karp, D.

Journal of Multivariate Analysis, 114, pages: 256-269, February 2013 (article)

Abstract
This paper studies fundamental aspects of modelling data using multivariate Watson distributions. Although these distributions are natural for modelling axially symmetric data (i.e., unit vectors where View the MathML source are equivalent), for high-dimensions using them can be difficult—largely because for Watson distributions even basic tasks such as maximum-likelihood are numerically challenging. To tackle the numerical difficulties some approximations have been derived. But these are either grossly inaccurate in high-dimensions [K.V. Mardia, P. Jupp, Directional Statistics, second ed., John Wiley & Sons, 2000] or when reasonably accurate [A. Bijral, M. Breitenbach, G.Z. Grudic, Mixture of Watson distributions: a generative model for hyperspherical embeddings, in: Artificial Intelligence and Statistics, AISTATS 2007, 2007, pp. 35–42], they lack theoretical justification. We derive new approximations to the maximum-likelihood estimates; our approximations are theoretically well-defined, numerically accurate, and easy to compute. We build on our parameter estimation and discuss mixture-modelling with Watson distributions; here we uncover a hitherto unknown connection to the “diametrical clustering” algorithm of Dhillon et al. [I.S. Dhillon, E.M. Marcotte, U. Roshan, Diametrical clustering for identifying anticorrelated gene clusters, Bioinformatics 19 (13) (2003) 1612–1619].

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
How the result of graph clustering methods depends on the construction of the graph

Maier, M., von Luxburg, U., Hein, M.

ESAIM: Probability & Statistics, 17, pages: 370-418, January 2013 (article)

Abstract
We study the scenario of graph-based clustering algorithms such as spectral clustering. Given a set of data points, one rst has to construct a graph on the data points and then apply a graph clustering algorithm to nd a suitable partition of the graph. Our main question is if and how the construction of the graph (choice of the graph, choice of parameters, choice of weights) in uences the outcome of the nal clustering result. To this end we study the convergence of cluster quality measures such as the normalized cut or the Cheeger cut on various kinds of random geometric graphs as the sample size tends to in nity. It turns out that the limit values of the same objective function are systematically di erent on di erent types of graphs. This implies that clustering results systematically depend on the graph and can be very di erent for di erent types of graph. We provide examples to illustrate the implications on spectral clustering.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Explicit eigenvalues of certain scaled trigonometric matrices

Sra, S.

Linear Algebra and its Applications, 438(1):173-181, January 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
How Sensitive Is the Human Visual System to the Local Statistics of Natural Images?

Gerhard, H., Wichmann, F., Bethge, M.

PLoS Computational Biology, 9(1):e1002873, January 2013 (article)

Abstract
Several aspects of primate visual physiology have been identified as adaptations to local regularities of natural images. However, much less work has measured visual sensitivity to local natural image regularities. Most previous work focuses on global perception of large images and shows that observers are more sensitive to visual information when image properties resemble those of natural images. In this work we measure human sensitivity to local natural image regularities using stimuli generated by patch-based probabilistic natural image models that have been related to primate visual physiology. We find that human observers can learn to discriminate the statistical regularities of natural image patches from those represented by current natural image models after very few exposures and that discriminability depends on the degree of regularities captured by the model. The quick learning we observed suggests that the human visual system is biased for processing natural images, even at very fine spatial scales, and that it has a surprisingly large knowledge of the regularities in natural images, at least in comparison to the state-of-the-art statistical models of natural images.

ei

DOI [BibTex]

DOI [BibTex]


no image
A neural population model for visual pattern detection

Goris, R., Putzeys, T., Wagemans, J., Wichmann, F.

Psychological Review, 120(3):472–496, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Accurate indel prediction using paired-end short reads

Grimm, D., Hagmann, J., Koenig, D., Weigel, D., Borgwardt, KM.

BMC Genomics, 14(132), 2013 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]