Header logo is


2015


no image
easyGWAS: An Integrated Computational Framework for Advanced Genome-Wide Association Studies

Grimm, Dominik

Eberhard Karls Universität Tübingen, November 2015 (phdthesis)

ei

[BibTex]

2015


[BibTex]


no image
Causal Discovery Beyond Conditional Independences

Sgouritsa, E.

Eberhard Karls Universität Tübingen, Germany, October 2015 (phdthesis)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
From Points to Probability Measures: A Statistical Learning on Distributions with Kernel Mean Embedding

Muandet, K.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Machine Learning Approaches to Image Deconvolution

Schuler, C.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Blind Retrospective Motion Correction of MR Images

Loktyushin, A.

University of Tübingen, Germany, May 2015 (phdthesis)

ei

[BibTex]

[BibTex]


no image
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Cosmology from Cosmic Shear with DES Science Verification Data

Abbott, T., Abdalla, F. B., Allam, S., Amara, A., Annis, J., Armstrong, R., Bacon, D., Banerji, M., Bauer, A. H., Baxter, E., others,

arXiv preprint arXiv:1507.05552, 2015 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The DES Science Verification Weak Lensing Shear Catalogs

Jarvis, M., Sheldon, E., Zuntz, J., Kacprzak, T., Bridle, S. L., Amara, A., Armstrong, R., Becker, M. R., Bernstein, G. M., Bonnett, C., others,

arXiv preprint arXiv:1507.05603, 2015 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Sequential Image Deconvolution Using Probabilistic Linear Algebra

Gao, M.

Technical University of Munich, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Causal Inference in Neuroimaging

Casarsa de Azevedo, L.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
The effect of frowning on attention

Ibarra Chaoul, A.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Strukturelle und spektroskopische Eigenschaften epitaktischer FeMn/Co Exchange-Bias-Systeme

Schmidt, M.

Universität Stuttgart, Stuttgart, 2015 (phdthesis)

mms

link (url) DOI [BibTex]


no image
Ultraschnelles Vortexkernschalten

Noske, M.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2015 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Investigations of unusual hard magnetic MnBi LTP phase, utilizing temperature dependent SQUID-FORC

Muralidhar, Shreyas

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Magnetische Röntgenmikroskopie an Hochtemperatur-Supraleitern

Stahl, C.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2015 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Voltage-induced magnetic manipulation of a microstructured iron gold multilayer system

Sittig, Robert

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Transfer of angular momentum from the spin system to the lattice during ultrafast magnetization

Tsatsoulis, T.

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Derivation of phenomenological expressions for transition matrix elements for electron-phonon scattering

Illg, C., Haag, M., Müller, B. Y., Czycholl, G., Fähnle, M.

2015 (misc)

mms

link (url) [BibTex]


no image
Quantum kinetic theory of ultrafast demagnetization by electron-phonon scattering

Briones Paz, J. Z.

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]

2009


no image
Learning an Interactive Segmentation System

Nickisch, H., Kohli, P., Rother, C.

Max Planck Institute for Biological Cybernetics, December 2009 (techreport)

Abstract
Many successful applications of computer vision to image or video manipulation are interactive by nature. However, parameters of such systems are often trained neglecting the user. Traditionally, interactive systems have been treated in the same manner as their fully automatic counterparts. Their performance is evaluated by computing the accuracy of their solutions under some fixed set of user interactions. This paper proposes a new evaluation and learning method which brings the user in the loop. It is based on the use of an active robot user - a simulated model of a human user. We show how this approach can be used to evaluate and learn parameters of state-of-the-art interactive segmentation systems. We also show how simulated user models can be integrated into the popular max-margin method for parameter learning and propose an algorithm to solve the resulting optimisation problem.

ei

Web [BibTex]

2009


Web [BibTex]


no image
Detection of objects in noisy images and site percolation on square lattices

Langovoy, M., Wittich, O.

(2009-035), EURANDOM, Technische Universiteit Eindhoven, November 2009 (techreport)

Abstract
We propose a novel probabilistic method for detection of objects in noisy images. The method uses results from percolation and random graph theories. We present an algorithm that allows to detect objects of unknown shapes in the presence of random noise. Our procedure substantially differs from wavelets-based algorithms. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. We prove results on consistency and algorithmic complexity of our procedure.

ei

PDF [BibTex]

PDF [BibTex]


no image
An Incremental GEM Framework for Multiframe Blind Deconvolution, Super-Resolution, and Saturation Correction

Harmeling, S., Sra, S., Hirsch, M., Schölkopf, B.

(187), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
We develop an incremental generalized expectation maximization (GEM) framework to model the multiframe blind deconvolution problem. A simplistic version of this problem was recently studied by Harmeling etal~cite{harmeling09}. We solve a more realistic version of this problem which includes the following major features: (i) super-resolution ability emph{despite} noise and unknown blurring; (ii) saturation-correction, i.e., handling of overexposed pixels that can otherwise confound the image processing; and (iii) simultaneous handling of color channels. These features are seamlessly integrated into our incremental GEM framework to yield simple but efficient multiframe blind deconvolution algorithms. We present technical details concerning critical steps of our algorithms, especially to highlight how all operations can be written using matrix-vector multiplications. We apply our algorithm to real-world images from astronomy and super resolution tasks. Our experimental results show that our methods yield improve d resolution and deconvolution at the same time.

ei

PDF [BibTex]

PDF [BibTex]


no image
Efficient Filter Flow for Space-Variant Multiframe Blind Deconvolution

Hirsch, M., Sra, S., Schölkopf, B., Harmeling, S.

(188), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
Ultimately being motivated by facilitating space-variant blind deconvolution, we present a class of linear transformations, that are expressive enough for space-variant filters, but at the same time especially designed for efficient matrix-vector-multiplications. Successful results on astronomical imaging through atmospheric turbulences and on noisy magnetic resonance images of constantly moving objects demonstrate the practical significance of our approach.

ei

PDF [BibTex]

PDF [BibTex]


no image
Algebraic polynomials and moments of stochastic integrals

Langovoy, M.

(2009-031), EURANDOM, Technische Universiteit Eindhoven, October 2009 (techreport)

ei

PDF [BibTex]

PDF [BibTex]


no image
Kernel Learning Approaches for Image Classification

Gehler, PV.

Biologische Kybernetik, Universität des Saarlandes, Saarbrücken, Germany, October 2009 (phdthesis)

Abstract
This thesis extends the use of kernel learning techniques to specific problems of image classification. Kernel learning is a paradigm in the field of machine learning that generalizes the use of inner products to compute similarities between arbitrary objects. In image classification one aims to separate images based on their visual content. We address two important problems that arise in this context: learning with weak label information and combination of heterogeneous data sources. The contributions we report on are not unique to image classification, and apply to a more general class of problems. We study the problem of learning with label ambiguity in the multiple instance learning framework. We discuss several different image classification scenarios that arise in this context and argue that the standard multiple instance learning requires a more detailed disambiguation. Finally we review kernel learning approaches proposed for this problem and derive a more efficient algorithm to solve them. The multiple kernel learning framework is an approach to automatically select kernel parameters. We extend it to its infinite limit and present an algorithm to solve the resulting problem. This result is then applied in two directions. We show how to learn kernels that adapt to the special structure of images. Finally we compare different ways of combining image features for object classification and present significant improvements compared to previous methods.

ei

PDF [BibTex]

PDF [BibTex]


no image
A PAC-Bayesian Approach to Structure Learning

Seldin, Y.

Biologische Kybernetik, The Hebrew University of Jerusalem, Israel, September 2009 (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Expectation Propagation on the Maximum of Correlated Normal Variables

Hennig, P.

Cavendish Laboratory: University of Cambridge, July 2009 (techreport)

Abstract
Many inference problems involving questions of optimality ask for the maximum or the minimum of a finite set of unknown quantities. This technical report derives the first two posterior moments of the maximum of two correlated Gaussian variables and the first two posterior moments of the two generating variables (corresponding to Gaussian approximations minimizing relative entropy). It is shown how this can be used to build a heuristic approximation to the maximum relationship over a finite set of Gaussian variables, allowing approximate inference by Expectation Propagation on such quantities.

ei pn

Web [BibTex]

Web [BibTex]


no image
Consistent Nonparametric Tests of Independence

Gretton, A., Györfi, L.

(172), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2009 (techreport)

Abstract
Three simple and explicit procedures for testing the independence of two multi-dimensional random variables are described. Two of the associated test statistics (L1, log-likelihood) are defined when the empirical distribution of the variables is restricted to finite partitions. A third test statistic is defined as a kernel-based independence measure. Two kinds of tests are provided. Distribution-free strong consistent tests are derived on the basis of large deviation bounds on the test statistcs: these tests make almost surely no Type I or Type II error after a random sample size. Asymptotically alpha-level tests are obtained from the limiting distribution of the test statistics. For the latter tests, the Type I error converges to a fixed non-zero value alpha, and the Type II error drops to zero, for increasing sample size. All tests reject the null hypothesis of independence if the test statistics become large. The performance of the tests is evaluated experimentally on benchmark data.

ei

PDF [BibTex]

PDF [BibTex]


no image
Semi-supervised subspace analysis of human functional magnetic resonance imaging data

Shelton, J., Blaschko, M., Bartels, A.

(185), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2009 (techreport)

Abstract
Kernel Canonical Correlation Analysis is a very general technique for subspace learning that incorporates PCA and LDA as special cases. Functional magnetic resonance imaging (fMRI) acquired data is naturally amenable to these techniques as data are well aligned. fMRI data of the human brain is a particularly interesting candidate. In this study we implemented various supervised and semi-supervised versions of KCCA on human fMRI data, with regression to single- and multi-variate labels (corresponding to video content subjects viewed during the image acquisition). In each variate condition, the semi-supervised variants of KCCA performed better than the supervised variants, including a supervised variant with Laplacian regularization. We additionally analyze the weights learned by the regression in order to infer brain regions that are important to different types of visual processing.

ei

PDF [BibTex]

PDF [BibTex]


no image
Kernel Methods in Computer Vision:Object Localization, Clustering,and Taxonomy Discovery

Blaschko, MB.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2009 (phdthesis)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Model selection, large deviations and consistency of data-driven tests

Langovoy, M.

(2009-007), EURANDOM, Technische Universiteit Eindhoven, March 2009 (techreport)

Abstract
We consider three general classes of data-driven statistical tests. Neyman's smooth tests, data-driven score tests and data-driven score tests for statistical inverse problems serve as important special examples for the classes of tests under consideration. Our tests are additionally incorporated with model selection rules. The rules are based on the penalization idea. Most of the optimal penalties, derived in statistical literature, can be used in our tests. We prove general consistency theorems for the tests from those classes. Our proofs make use of large deviations inequalities for deterministic and random quadratic forms. The paper shows that the tests can be applied for simple and composite parametric, semi- and nonparametric hypotheses. Applications to testing in statistical inverse problems and statistics for stochastic processes are also presented..

ei

PDF [BibTex]

PDF [BibTex]


no image
Motor Control and Learning in Table Tennis

Mülling, K.

Eberhard Karls Universität Tübingen, Gerrmany, 2009 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Hierarchical Clustering and Density Estimation Based on k-nearest-neighbor graphs

Drewe, P.

Eberhard Karls Universität Tübingen, Germany, 2009 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Learning with Structured Data: Applications to Computer Vision

Nowozin, S.

Technische Universität Berlin, Germany, 2009 (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
From Differential Equations to Differential Geometry: Aspects of Regularisation in Machine Learning

Steinke, F.

Universität des Saarlandes, Saarbrücken, Germany, 2009 (phdthesis)

ei

PDF [BibTex]


no image
Magnetische L10-FePt Nanostrukturen für höchste Datenspeicherdichten

Breitling, A.

Universität Stuttgart, Stuttgart, 2009 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Ab-initio Elliott-Yafet modeling of ultrafast demagnetization after laser irradiation

Illg, C.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Element specific investigation of the magnetization profile at the CrO2/RuO2 interface

Zafar, K.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Magnetic resonant reflectometry on exchange bias systems

Brück, S.

Universität Stuttgart, Stuttgart, 2009 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
In-situ - Untersuchungen zu Interdiffusion und Magnetismus in magnetischen Multilayern

Schmidt, M.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Theorie der elektronischen Zustände in oxidischen magnetischen Materialien

Kostoglou, C.

Universität Stuttgart, Stuttgart, 2009 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Magnetooptische Untersuchungen an Ferromagnet- und Supraleiter-Nanosystemen und deren Hybriden

Treiber, S.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

mms

[BibTex]

[BibTex]

2003


no image
Support Vector Channel Selection in BCI

Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.

(120), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, December 2003 (techreport)

Abstract
Designing a Brain Computer Interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying EEG signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination [3] and Zero-Norm Optimization [13] which are based on the training of Support Vector Machines (SVM) [11]. These algorithms can provide more accurate solutions than standard filter methods for feature selection [14]. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.

ei

PDF Web [BibTex]

2003


PDF Web [BibTex]


no image
Technical report on Separation methods for nonlinear mixtures

Jutten, C., Karhunen, J., Almeida, L., Harmeling, S.

(D29), EU-Project BLISS, October 2003 (techreport)

ei

PDF [BibTex]

PDF [BibTex]


no image
Image Reconstruction by Linear Programming

Tsuda, K., Rätsch, G.

(118), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, October 2003 (techreport)

ei

PDF [BibTex]

PDF [BibTex]


no image
Real-Time Face Detection

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Technical report on implementation of linear methods and validation on acoustic sources

Harmeling, S., Bünau, P., Ziehe, A., Pham, D.

EU-Project BLISS, September 2003 (techreport)

ei

PDF [BibTex]

PDF [BibTex]


no image
Ranking on Data Manifolds

Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.

(113), Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany, June 2003 (techreport)

Abstract
The Google search engine has had a huge success with its PageRank web page ranking algorithm, which exploits global, rather than local, hyperlink structure of the World Wide Web using random walk. This algorithm can only be used for graph data, however. Here we propose a simple universal ranking algorithm for vectorial data, based on the exploration of the intrinsic global geometric structure revealed by a huge amount of data. Experimental results from image and text to bioinformatics illustrates the validity of our algorithm.

ei

PDF [BibTex]

PDF [BibTex]