Header logo is


2015


no image
Learning Torque Control in Presence of Contacts using Tactile Sensing from Robot Skin

Calandra, R., Ivaldi, S., Deisenroth, M., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 690-695, Humanoids, November 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

2015


link (url) DOI [BibTex]


no image
Evaluation of Interactive Object Recognition with Tactile Sensing

Hoelscher, J., Peters, J., Hermans, T.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 310-317, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Optimizing Robot Striking Movement Primitives with Iterative Learning Control

Koc, O., Maeda, G., Neumann, G., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 80-87, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


no image
easyGWAS: An Integrated Computational Framework for Advanced Genome-Wide Association Studies

Grimm, Dominik

Eberhard Karls Universität Tübingen, November 2015 (phdthesis)

ei

[BibTex]

[BibTex]


no image
A Comparison of Contact Distribution Representations for Learning to Predict Object Interactions

Leischnig, S., Luettgen, S., Kroemer, O., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 616-622, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Quantifying changes in climate variability and extremes: Pitfalls and their overcoming

Sippel, S., Zscheischler, J., Heimann, M., Otto, F. E. L., Peters, J., Mahecha, M. D.

Geophysical Research Letters, 42(22):9990-9998, November 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
First-Person Tele-Operation of a Humanoid Robot

Fritsche, L., Unverzagt, F., Peters, J., Calandra, R.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 997-1002, Humanoids, November 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic Segmentation Applied to an Assembly Task

Lioutikov, R., Neumann, G., Maeda, G., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 533-540, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Diversity of sharp wave-ripple LFP signatures reveals differentiated brain-wide dynamical events

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

Proceedings of the National Academy of Sciences U.S.A, 112(46):E6379-E6387, November 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Reducing Student Anonymity and Increasing Engagement

Kuchenbecker, K. J.

University of Pennsylvania Almanac, 62(18):8, November 2015 (article)

hi

[BibTex]

[BibTex]


no image
Causal Discovery Beyond Conditional Independences

Sgouritsa, E.

Eberhard Karls Universität Tübingen, Germany, October 2015 (phdthesis)

ei

link (url) [BibTex]

link (url) [BibTex]


Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS), pages: , , Machine Learning in Planning and Control of Robot Motion Workshop, October 2015 (conference)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Preliminary results of a low-dimensional tuning problem highlight the method’s potential for automatic controller tuning on robotic platforms.

am ei ics pn

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Gaussian Process Optimization for Self-Tuning Control
Gaussian Process Optimization for Self-Tuning Control

Marco, A.

Polytechnic University of Catalonia (BarcelonaTech), October 2015 (mastersthesis)

am ics

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
Noise masking of White’s illusion exposes the weakness of current spatial filtering models of lightness perception

Betz, T., Shapley, R. M., Wichmann, F. A., Maertens, M.

Journal of Vision, 15(14):1-17, October 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Permutational Rademacher Complexity: a New Complexity Measure for Transductive Learning

Tolstikhin, I., Zhivotovskiy, N., Blanchard, G.

In Proceedings of the 26th International Conference on Algorithmic Learning Theory, 9355, pages: 209-223, Lecture Notes in Computer Science, (Editors: K. Chaudhuri, C. Gentile and S. Zilles), Springer, ALT, October 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Surgeons and Non-Surgeons Prefer Haptic Feedback of Instrument Vibrations During Robotic Surgery

Koehn, J. K., Kuchenbecker, K. J.

Surgical Endoscopy, 29(10):2970-2983, October 2015 (article)

hi

[BibTex]

[BibTex]


no image
Displaying Sensed Tactile Cues with a Fingertip Haptic Device

Pacchierotti, C., Prattichizzo, D., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 8(4):384-396, October 2015 (article)

hi

[BibTex]

[BibTex]


no image
From Points to Probability Measures: A Statistical Learning on Distributions with Kernel Mean Embedding

Muandet, K.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Machine Learning Approaches to Image Deconvolution

Schuler, C.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Stabilizing Novel Objects by Learning to Predict Tactile Slip

Veiga, F., van Hoof, H., Peters, J., Hermans, T.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 5065-5072, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer

Besserve, M., Lowe, S. C., Logothetis, N. K., Schölkopf, B., Panzeri, S.

PLOS Biology, 13(9):e1002257, September 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Model-Free Probabilistic Movement Primitives for Physical Interaction

Paraschos, A., Rueckert, E., Peters, J., Neumann, G.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 2860-2866, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Combined Pose-Wrench and State Machine Representation for Modeling Robotic Assembly Skills

Wahrburg, A., Zeiss, S., Matthias, B., Peters, J., Ding, H.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 852-857, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic Progress Prediction and Sequencing of Concurrent Movement Primitives

Manschitz, S., Kober, J., Gienger, M., Peters, J.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 449-455, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reinforcement Learning vs Human Programming in Tetherball Robot Games

Parisi, S., Abdulsamad, H., Paraschos, A., Daniel, C., Peters, J.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 6428-6434, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motor Skills from Partially Observed Movements Executed at Different Speeds

Ewerton, M., Maeda, G., Peters, J., Neumann, G.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 456-463, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Semi-Supervised Interpolation in an Anticausal Learning Scenario

Janzing, D., Schölkopf, B.

Journal of Machine Learning Research, 16, pages: 1923-1948, September 2015 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Adaptive and Learning Concepts in Hydraulic Force Control

Doerr, A.

University of Stuttgart, September 2015 (mastersthesis)

am ics

[BibTex]

[BibTex]


no image
Is Breathing Rate a Confounding Variable in Brain-Computer Interfaces (BCIs) Based on EEG Spectral Power?

Ibarra Chaoul, A., Grosse-Wentrup, M.

Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages: 1079-1082, EMBC, August 2015 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Testing the role of luminance edges in White’s illusion with contour adaptation

Betz, T., Shapley, R. M., Wichmann, F. A., Maertens, M.

Journal of Vision, 15(11):1-16, August 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
A thin film active-lens with translational control for dynamically programmable optical zoom

Yun, S., Park, S., Park, B., Nam, S., Park, S. K., Kyung, K.

Applied Physics Letters, 107(8):081907, AIP Publishing, August 2015 (article)

Abstract
We demonstrate a thin film active-lens for rapidly and dynamically controllable optical zoom. The active-lens is composed of a convex hemispherical polydimethylsiloxane (PDMS) lens structure working as an aperture and a dielectric elastomer (DE) membrane actuator, which is a combination of a thin DE layer made with PDMS and a compliant electrode pattern using silver-nanowires. The active-lens is capable of dynamically changing focal point of the soft aperture as high as 18.4% through its translational movement in vertical direction responding to electrically induced bulged-up deformation of the DE membrane actuator. Under operation with various sinusoidal voltage signals, the movement responses are fairly consistent with those estimated from numerical simulation. The responses are not only fast, fairly reversible, and highly durable during continuous cyclic operations, but also large enough to impart dynamic focus tunability for optical zoom in microscopic imaging devices with a light-weight and ultra-slim configuration.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Retrospective motion correction of magnitude-input MR images

Loktyushin, A., Schuler, C., Scheffler, K., Schölkopf, B.

First International Workshop on Machine Learning Meets Medical Imaging (MLMMI 2015), held in conjunction with ICML 2015, 9487, pages: 3-12, Lecture Notes in Computer Science, (Editors: K. K. Bhatia and H. Lombaert), Springer, July 2015 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Direct Loss Minimization Inverse Optimal Control
Direct Loss Minimization Inverse Optimal Control

Doerr, A., Ratliff, N., Bohg, J., Toussaint, M., Schaal, S.

In Proceedings of Robotics: Science and Systems, Rome, Italy, Robotics: Science and Systems XI, July 2015 (inproceedings)

Abstract
Inverse Optimal Control (IOC) has strongly impacted the systems engineering process, enabling automated planner tuning through straightforward and intuitive demonstration. The most successful and established applications, though, have been in lower dimensional problems such as navigation planning where exact optimal planning or control is feasible. In higher dimensional systems, such as humanoid robots, research has made substantial progress toward generalizing the ideas to model free or locally optimal settings, but these systems are complicated to the point where demonstration itself can be difficult. Typically, real-world applications are restricted to at best noisy or even partial or incomplete demonstrations that prove cumbersome in existing frameworks. This work derives a very flexible method of IOC based on a form of Structured Prediction known as Direct Loss Minimization. The resulting algorithm is essentially Policy Search on a reward function that rewards similarity to demonstrated behavior (using Covariance Matrix Adaptation (CMA) in our experiments). Our framework blurs the distinction between IOC, other forms of Imitation Learning, and Reinforcement Learning, enabling us to derive simple, versatile, and practical algorithms that blend imitation and reinforcement signals into a unified framework. Our experiments analyze various aspects of its performance and demonstrate its efficacy on conveying preferences for motion shaping and combined reach and grasp quality optimization.

am ics

PDF Video Project Page [BibTex]

PDF Video Project Page [BibTex]


no image
LMI-Based Synthesis for Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceedings of the American Control Conference, July 2015 (inproceedings)

Abstract
This paper presents an LMI-based synthesis procedure for distributed event-based state estimation. Multiple agents observe and control a dynamic process by sporadically exchanging data over a broadcast network according to an event-based protocol. In previous work [1], the synthesis of event-based state estimators is based on a centralized design. In that case three different types of communication are required: event-based communication of measurements, periodic reset of all estimates to their joint average, and communication of inputs. The proposed synthesis problem eliminates the communication of inputs as well as the periodic resets (under favorable circumstances) by accounting explicitly for the distributed structure of the control system.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Guaranteed H2 Performance in Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
On the Choice of the Event Trigger in Event-based Estimation

Trimpe, S., Campi, M.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Toward a large-scale visuo-haptic dataset for robotic learning

Burka, A., Hu, S., Krishnan, S., Kuchenbecker, K. J., Hendricks, L. A., Gao, Y., Darrell, T.

In Proc. CVPR Workshop on the Future of Datasets in Vision, 2015 (inproceedings)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Detecting Lumps in Simulated Tissue via Palpation with a BioTac

Hui, J., Block, A., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, 2015, Work-in-progress paper. Poster presentation given by Hui (inproceedings)

hi

[BibTex]

[BibTex]


no image
Analysis of the Instrument Vibrations and Contact Forces Caused by an Expert Robotic Surgeon Doing FRS Tasks

Brown, J. D., O’Brien, C., Miyasaka, K., Dumon, K. R., Kuchenbecker, K. J.

In Proc. Hamlyn Symposium on Medical Robotics, pages: 75-76, London, England, June 2015, Poster presentation given by Brown (inproceedings)

hi

[BibTex]

[BibTex]


no image
Should Haptic Texture Vibrations Respond to User Force and Speed?

Culbertson, H., Kuchenbecker, K. J.

In IEEE World Haptics Conference, pages: 106 - 112, Evanston, Illinois, USA, June 2015, Oral presentation given by Culbertson (inproceedings)

hi

[BibTex]

[BibTex]


no image
Enabling the Baxter Robot to Play Hand-Clapping Games

Fitter, N. T., Neuburger, M., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, June 2015, Work-in-progress paper. Poster presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


Permutohedral Lattice CNNs
Permutohedral Lattice CNNs

Kiefel, M., Jampani, V., Gehler, P. V.

In ICLR Workshop Track, ICLR, May 2015 (inproceedings)

Abstract
This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation. Its use allows for a generalization of the convolution type found in current (spatial) convolutional network architectures.

ei ps

pdf link (url) [BibTex]

pdf link (url) [BibTex]


no image
Blind Retrospective Motion Correction of MR Images

Loktyushin, A.

University of Tübingen, Germany, May 2015 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Event-based Estimation and Control for Remote Robot Operation with Reduced Communication

Trimpe, S., Buchli, J.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
An event-based communication framework for remote operation of a robot via a bandwidth-limited network is proposed. The robot sends state and environment estimation data to the operator, and the operator transmits updated control commands or policies to the robot. Event-based communication protocols are designed to ensure that data is transmitted only when required: the robot sends new estimation data only if this yields a significant information gain at the operator, and the operator transmits an updated control policy only if this comes with a significant improvement in control performance. The developed framework is modular and can be used with any standard estimation and control algorithms. Simulation results of a robotic arm highlight its potential for an efficient use of limited communication resources, for example, in disaster response scenarios such as the DARPA Robotics Challenge.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Data-Driven Motion Mappings Improve Transparency in Teleoperation

Khurshid, R. P., Kuchenbecker, K. J.

Presence: Teleoperators and Virtual Environments, 24(2):132-154, May 2015 (article)

hi

[BibTex]

[BibTex]


no image
Blind multirigid retrospective motion correction of MR images

Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.

Magnetic Resonance in Medicine, 73(4):1457-1468, April 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Using IMU Data to Teach a Robot Hand-Clapping Games

Fitter, N. T., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 353-355, April 2015, Work-in-progress paper. Poster presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Haptic Feedback in Transoral Robotic Surgery: A Feasibility Study

Bur, A. M., Gomez, E. D., Rassekh, C. H., Newman, J. G., Weinstein, G. S., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Triological Society at COSM, April 2015, Poster presentation given by Bur (inproceedings)

hi

[BibTex]

[BibTex]


no image
A quantum advantage for inferring causal structure

Ried, K., Agnew, M., Vermeyden, L., Janzing, D., Spekkens, R. W., Resch, K. J.

Nature Physics, 11(5):414-420, March 2015 (article)

Abstract
The problem of inferring causal relations from observed correlations is relevant to a wide variety of scientific disciplines. Yet given the correlations between just two classical variables, it is impossible to determine whether they arose from a causal influence of one on the other or a common cause influencing both. Only a randomized trial can settle the issue. Here we consider the problem of causal inference for quantum variables. We show that the analogue of a randomized trial, causal tomography, yields a complete solution. We also show that, in contrast to the classical case, one can sometimes infer the causal structure from observations alone. We implement a quantum-optical experiment wherein we control the causal relation between two optical modes, and two measurement schemes—with and without randomization—that extract this relation from the observed correlations. Our results show that entanglement and quantum coherence provide an advantage for causal inference.

ei

DOI [BibTex]

DOI [BibTex]


no image
Design and Validation of a Practical Simulator for Transoral Robotic Surgery

Bur, A. M., Gomez, E. D., Chalian, A. A., Newman, J. G., Weinstein, G. S., Kuchenbecker, K. J.

In Proc. Society for Robotic Surgery Annual Meeting: Transoral Program, (T8), February 2015, Oral presentation given by Bur (inproceedings)

hi

[BibTex]

[BibTex]