Header logo is


2017


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J., Schaal, S.

In Springer Handbook of Robotics, pages: 357-394, 15, 2nd, (Editors: Siciliano, Bruno and Khatib, Oussama), Springer International Publishing, 2017 (inbook)

am ei

Project Page [BibTex]

2017


Project Page [BibTex]

2014


no image
Pole Balancing with Apollo

Holger Kaden

Eberhard Karls Universität Tübingen, December 2014 (mastersthesis)

am

[BibTex]

2014


[BibTex]


no image
Learning Coupling Terms for Obstacle Avoidance

Rai, A.

École polytechnique fédérale de Lausanne, August 2014 (mastersthesis)

am

Project Page [BibTex]

Project Page [BibTex]


no image
Object Tracking in Depth Images Using Sigma Point Kalman Filters

Issac, J.

Karlsruhe Institute of Technology, July 2014 (mastersthesis)

am

Project Page [BibTex]

Project Page [BibTex]


no image
Learning objective functions for autonomous motion generation

Kalakrishnan, M.

University of Southern California, University of Southern California, Los Angeles, CA, 2014 (phdthesis)

am

Project Page Project Page [BibTex]

Project Page Project Page [BibTex]


no image
Data-driven autonomous manipulation

Pastor, P.

University of Southern California, University of Southern California, Los Angeles, CA, 2014 (phdthesis)

am

Project Page Project Page [BibTex]

Project Page Project Page [BibTex]

2010


no image
Locally weighted regression for control

Ting, J., Vijayakumar, S., Schaal, S.

In Encyclopedia of Machine Learning, pages: 613-624, (Editors: Sammut, C.;Webb, G. I.), Springer, 2010, clmc (inbook)

Abstract
This is article addresses two topics: learning control and locally weighted regression.

am

link (url) [BibTex]

2010


link (url) [BibTex]

2005


no image
Linear and Nonlinear Estimation models applied to Hemodynamic Model

Theodorou, E.

Technical Report-2005-1, Computational Action and Vision Lab University of Minnesota, 2005, clmc (techreport)

Abstract
The relation between BOLD signal and neural activity is still poorly understood. The Gaussian Linear Model known as GLM is broadly used in many fMRI data analysis for recovering the underlying neural activity. Although GLM has been proved to be a really useful tool for analyzing fMRI data it can not be used for describing the complex biophysical process of neural metabolism. In this technical report we make use of a system of Stochastic Differential Equations that is based on Buxton model [1] for describing the underlying computational principles of hemodynamic process. Based on this SDE we built a Kalman Filter estimator so as to estimate the induced neural signal as well as the blood inflow under physiologic and sensor noise. The performance of Kalman Filter estimator is investigated under different physiologic noise characteristics and measurement frequencies.

am

PDF [BibTex]

2005


PDF [BibTex]

1995


no image
Batting a ball: Dynamics of a rhythmic skill

Sternad, D., Schaal, S., Atkeson, C. G.

In Studies in Perception and Action, pages: 119-122, (Editors: Bardy, B.;Bostma, R.;Guiard, Y.), Erlbaum, Hillsdayle, NJ, 1995, clmc (inbook)

am

[BibTex]

1995


[BibTex]