Header logo is


2019


Thumb xl celia
Decoding subcategories of human bodies from both body- and face-responsive cortical regions

Foster, C., Zhao, M., Romero, J., Black, M. J., Mohler, B. J., Bartels, A., Bülthoff, I.

NeuroImage, 202(15):116085, November 2019 (article)

Abstract
Our visual system can easily categorize objects (e.g. faces vs. bodies) and further differentiate them into subcategories (e.g. male vs. female). This ability is particularly important for objects of social significance, such as human faces and bodies. While many studies have demonstrated category selectivity to faces and bodies in the brain, how subcategories of faces and bodies are represented remains unclear. Here, we investigated how the brain encodes two prominent subcategories shared by both faces and bodies, sex and weight, and whether neural responses to these subcategories rely on low-level visual, high-level visual or semantic similarity. We recorded brain activity with fMRI while participants viewed faces and bodies that varied in sex, weight, and image size. The results showed that the sex of bodies can be decoded from both body- and face-responsive brain areas, with the former exhibiting more consistent size-invariant decoding than the latter. Body weight could also be decoded in face-responsive areas and in distributed body-responsive areas, and this decoding was also invariant to image size. The weight of faces could be decoded from the fusiform body area (FBA), and weight could be decoded across face and body stimuli in the extrastriate body area (EBA) and a distributed body-responsive area. The sex of well-controlled faces (e.g. excluding hairstyles) could not be decoded from face- or body-responsive regions. These results demonstrate that both face- and body-responsive brain regions encode information that can distinguish the sex and weight of bodies. Moreover, the neural patterns corresponding to sex and weight were invariant to image size and could sometimes generalize across face and body stimuli, suggesting that such subcategorical information is encoded with a high-level visual or semantic code.

ps

paper pdf DOI [BibTex]

2019


paper pdf DOI [BibTex]


Thumb xl multihumanoflow thumb
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

arxiv preprint arXiv:1910.1166, November 2019 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

ps

Paper poster link (url) [BibTex]


Thumb xl autonomous mocap cover image new
Active Perception based Formation Control for Multiple Aerial Vehicles

Tallamraju, R., Price, E., Ludwig, R., Karlapalem, K., Bülthoff, H. H., Black, M. J., Ahmad, A.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 4(4):4491-4498, IEEE, October 2019 (article)

Abstract
We present a novel robotic front-end for autonomous aerial motion-capture (mocap) in outdoor environments. In previous work, we presented an approach for cooperative detection and tracking (CDT) of a subject using multiple micro-aerial vehicles (MAVs). However, it did not ensure optimal view-point configurations of the MAVs to minimize the uncertainty in the person's cooperatively tracked 3D position estimate. In this article, we introduce an active approach for CDT. In contrast to cooperatively tracking only the 3D positions of the person, the MAVs can actively compute optimal local motion plans, resulting in optimal view-point configurations, which minimize the uncertainty in the tracked estimate. We achieve this by decoupling the goal of active tracking into a quadratic objective and non-convex constraints corresponding to angular configurations of the MAVs w.r.t. the person. We derive this decoupling using Gaussian observation model assumptions within the CDT algorithm. We preserve convexity in optimization by embedding all the non-convex constraints, including those for dynamic obstacle avoidance, as external control inputs in the MPC dynamics. Multiple real robot experiments and comparisons involving 3 MAVs in several challenging scenarios are presented.

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


no image
Convolutional neural networks: A magic bullet for gravitational-wave detection?

Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.

Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 3dmm
3D Morphable Face Models - Past, Present and Future

Egger, B., Smith, W. A. P., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., Vetter, T.

arxiv preprint arXiv:1909.01815, September 2019 (article)

Abstract
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation,and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications.

ps

paper project page [BibTex]

paper project page [BibTex]


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl hessepami
Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences

Hesse, N., Pujades, S., Black, M., Arens, M., Hofmann, U., Schroeder, S.

Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019 (article)

Abstract
Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.

ps

pdf Journal DOI [BibTex]

pdf Journal DOI [BibTex]


Thumb xl kenny
Perceptual Effects of Inconsistency in Human Animations

Kenny, S., Mahmood, N., Honda, C., Black, M. J., Troje, N. F.

ACM Trans. Appl. Percept., 16(1):2:1-2:18, Febuary 2019 (article)

Abstract
The individual shape of the human body, including the geometry of its articulated structure and the distribution of weight over that structure, influences the kinematics of a person’s movements. How sensitive is the visual system to inconsistencies between shape and motion introduced by retargeting motion from one person onto the shape of another? We used optical motion capture to record five pairs of male performers with large differences in body weight, while they pushed, lifted, and threw objects. From these data, we estimated both the kinematics of the actions as well as the performer’s individual body shape. To obtain consistent and inconsistent stimuli, we created animated avatars by combining the shape and motion estimates from either a single performer or from different performers. Using these stimuli we conducted three experiments in an immersive virtual reality environment. First, a group of participants detected which of two stimuli was inconsistent. Performance was very low, and results were only marginally significant. Next, a second group of participants rated perceived attractiveness, eeriness, and humanness of consistent and inconsistent stimuli, but these judgements of animation characteristics were not affected by consistency of the stimuli. Finally, a third group of participants rated properties of the objects rather than of the performers. Here, we found strong influences of shape-motion inconsistency on perceived weight and thrown distance of objects. This suggests that the visual system relies on its knowledge of shape and motion and that these components are assimilated into an altered perception of the action outcome. We propose that the visual system attempts to resist inconsistent interpretations of human animations. Actions involving object manipulations present an opportunity for the visual system to reinterpret the introduced inconsistencies as a change in the dynamics of an object rather than as an unexpected combination of body shape and body motion.

ps

publisher pdf DOI [BibTex]

publisher pdf DOI [BibTex]


no image
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T

Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.

Magnetic Resonance in Medicine, 2019, (Early View) (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl fig multidimensional contrast limited adaptive histogram equalization kb
Multidimensional Contrast Limited Adaptive Histogram Equalization

Stimper, V., Bauer, S., Ernstorfer, R., Schölkopf, B., Xian, R. P.

IEEE Access, 7, pages: 165437-165447, 2019 (article)

ei

arXiv link (url) DOI [BibTex]

arXiv link (url) DOI [BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 2019, PNAS published ahead of print January 22, 2019 (article)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


Thumb xl screenshot 2019 03 25 at 14.29.22
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

ei

Arxiv Video [BibTex]


Thumb xl virtualcaliper
The Virtual Caliper: Rapid Creation of Metrically Accurate Avatars from 3D Measurements

Pujades, S., Mohler, B., Thaler, A., Tesch, J., Mahmood, N., Hesse, N., Bülthoff, H. H., Black, M. J.

IEEE Transactions on Visualization and Computer Graphics, 25, pages: 1887,1897, IEEE, 2019 (article)

Abstract
Creating metrically accurate avatars is important for many applications such as virtual clothing try-on, ergonomics, medicine, immersive social media, telepresence, and gaming. Creating avatars that precisely represent a particular individual is challenging however, due to the need for expensive 3D scanners, privacy issues with photographs or videos, and difficulty in making accurate tailoring measurements. We overcome these challenges by creating “The Virtual Caliper”, which uses VR game controllers to make simple measurements. First, we establish what body measurements users can reliably make on their own body. We find several distance measurements to be good candidates and then verify that these are linearly related to 3D body shape as represented by the SMPL body model. The Virtual Caliper enables novice users to accurately measure themselves and create an avatar with their own body shape. We evaluate the metric accuracy relative to ground truth 3D body scan data, compare the method quantitatively to other avatar creation tools, and perform extensive perceptual studies. We also provide a software application to the community that enables novices to rapidly create avatars in fewer than five minutes. Not only is our approach more rapid than existing methods, it exports a metrically accurate 3D avatar model that is rigged and skinned.

ps

Project Page IEEE Open Access IEEE Open Access PDF DOI [BibTex]

Project Page IEEE Open Access IEEE Open Access PDF DOI [BibTex]


no image
Inferring causation from time series with perspectives in Earth system sciences

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M. S. B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.

Nature Communications, 2019 (article) In revision

ei

[BibTex]

[BibTex]


no image
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces

Klus, S., Schuster, I., Muandet, K.

Journal of Nonlinear Science, 2019, First Online: 21 August 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]

2010


no image
Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis

Besserve, M., Schölkopf, B., Logothetis, N., Panzeri, S.

Journal of Computational Neuroscience, 29(3):547-566, December 2010 (article)

ei

PDF DOI [BibTex]

2010


PDF DOI [BibTex]


no image
Tackling Box-Constrained Optimization via a New Projected Quasi-Newton Approach

Kim, D., Sra, S., Dhillon, I.

SIAM Journal on Scientific Computing, 32(6):3548-3563 , December 2010 (article)

Abstract
Numerous scientific applications across a variety of fields depend on box-constrained convex optimization. Box-constrained problems therefore continue to attract research interest. We address box-constrained (strictly convex) problems by deriving two new quasi-Newton algorithms. Our algorithms are positioned between the projected-gradient [J. B. Rosen, J. SIAM, 8 (1960), pp. 181–217] and projected-Newton [D. P. Bertsekas, SIAM J. Control Optim., 20 (1982), pp. 221–246] methods. We also prove their convergence under a simple Armijo step-size rule. We provide experimental results for two particular box-constrained problems: nonnegative least squares (NNLS), and nonnegative Kullback–Leibler (NNKL) minimization. For both NNLS and NNKL our algorithms perform competitively as compared to well-established methods on medium-sized problems; for larger problems our approach frequently outperforms the competition.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Algorithmen zum Automatischen Erlernen von Motorfähigkeiten

Peters, J., Kober, J., Schaal, S.

at - Automatisierungstechnik, 58(12):688-694, December 2010 (article)

Abstract
Robot learning methods which allow autonomous robots to adapt to novel situations have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics. If possible, scaling was usually only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i. e., firstly, we study policy learning algorithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structures for task representation and execution.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
PAC-Bayesian Analysis of Co-clustering and Beyond

Seldin, Y., Tishby, N.

Journal of Machine Learning Research, 11, pages: 3595-3646, December 2010 (article)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Gaussian Processes for Machine Learning (GPML) Toolbox

Rasmussen, C., Nickisch, H.

Journal of Machine Learning Research, 11, pages: 3011-3015, November 2010 (article)

Abstract
The GPML toolbox provides a wide range of functionality for Gaussian process (GP) inference and prediction. GPs are specified by mean and covariance functions; we offer a library of simple mean and covariance functions and mechanisms to compose more complex ones. Several likelihood functions are supported including Gaussian and heavy-tailed for regression as well as others suitable for classification. Finally, a range of inference methods is provided, including exact and variational inference, Expectation Propagation, and Laplace's method dealing with non-Gaussian likelihoods and FITC for dealing with large regression tasks.

ei

Web [BibTex]

Web [BibTex]


no image
Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution

Armache, J-P., Jarasch, A., Anger, AM., Villa, E., Becker, T., Bhushan, S., Jossinet, F., Habeck, M., Dindar, G., Franckenberg, S., Marquez, V., Mielke, T., Thomm, M., Berninghausen, O., Beatrix, B., Söding, J., Westhof, E., Wilson, DN., Beckmann, R.

Proceedings of the National Academy of Sciences of the United States of America, 107(46):19748-19753, November 2010 (article)

Abstract
Protein biosynthesis, the translation of the genetic code into polypeptides, occurs on ribonucleoprotein particles called ribosomes. Although X-ray structures of bacterial ribosomes are available, high-resolution structures of eukaryotic 80S ribosomes are lacking. Using cryoelectron microscopy and single-particle reconstruction, we have determined the structure of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Å resolution. This map, together with a 6.1-Å map of a Saccharomyces cerevisiae 80S ribosome, has enabled us to model ∼98% of the rRNA. Accurate assignment of the rRNA expansion segments (ES) and variable regions has revealed unique ES–ES and r-protein–ES interactions, providing insight into the structure and evolution of the eukaryotic ribosome.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Policy gradient methods

Peters, J.

Scholarpedia, 5(11):3698, November 2010 (article)

Abstract
Policy gradient methods are a type of reinforcement learning techniques that rely upon optimizing parametrized policies with respect to the expected return (long-term cumulative reward) by gradient descent. They do not suffer from many of the problems that have been marring traditional reinforcement learning approaches such as the lack of guarantees of a value function, the intractability problem resulting from uncertain state information and the complexity arising from continuous states & actions.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Localization of eukaryote-specific ribosomal proteins in a 5.5-Å cryo-EM map of the 80S eukaryotic ribosome

Armache, J-P., Jarasch, A., Anger, AM., Villa, E., Becker, T., Bhushan, S., Jossinet, F., Habeck, M., Dindar, G., Franckenberg, S., Marquez, V., Mielke, T., Thomm, M., Berninghausen, O., Beatrix, B., Söding, J., Westhof, E., Wilson, DN., Beckmann, R.

Proceedings of the National Academy of Sciences of the United States of America, 107(46):19754-19759, November 2010 (article)

Abstract
Protein synthesis in all living organisms occurs on ribonucleoprotein particles, called ribosomes. Despite the universality of this process, eukaryotic ribosomes are significantly larger in size than their bacterial counterparts due in part to the presence of 80 r proteins rather than 54 in bacteria. Using cryoelectron microscopy reconstructions of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Å resolution, together with a 6.1-Å map of a translating Saccharomyces cerevisiae 80S ribosome, we have localized and modeled 74/80 (92.5%) of the ribosomal proteins, encompassing 12 archaeal/eukaryote-specific small subunit proteins as well as the complete complement of the ribosomal proteins of the eukaryotic large subunit. Near-complete atomic models of the 80S ribosome provide insights into the structure, function, and evolution of the eukaryotic translational apparatus.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Spatio-Spectral Remote Sensing Image Classification With Graph Kernels

Camps-Valls, G., Shervashidze, N., Borgwardt, K.

IEEE Geoscience and Remote Sensing Letters, 7(4):741-745, October 2010 (article)

Abstract
This letter presents a graph kernel for spatio-spectral remote sensing image classification with support vector machines (SVMs). The method considers higher order relations in the neighborhood (beyond pairwise spatial relations) to iteratively compute a kernel matrix for SVM learning. The proposed kernel is easy to compute and constitutes a powerful alternative to existing approaches. The capabilities of the method are illustrated in several multi- and hyperspectral remote sensing images acquired over both urban and agricultural areas.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Causal Inference Using the Algorithmic Markov Condition

Janzing, D., Schölkopf, B.

IEEE Transactions on Information Theory, 56(10):5168-5194, October 2010 (article)

Abstract
Inferring the causal structure that links $n$ observables is usually based upon detecting statistical dependences and choosing simple graphs that make the joint measure Markovian. Here we argue why causal inference is also possible when the sample size is one. We develop a theory how to generate causal graphs explaining similarities between single objects. To this end, we replace the notion of conditional stochastic independence in the causal Markov condition with the vanishing of conditional algorithmic mutual information and describe the corresponding causal inference rules. We explain why a consistent reformulation of causal inference in terms of algorithmic complexity implies a new inference principle that takes into account also the complexity of conditional probability densities, making it possible to select among Markov equivalent causal graphs. This insight provides a theoretical foundation of a heuristic principle proposed in earlier work. We also sketch some ideas on how to replace Kolmogorov complexity with decidable complexity criteria. This can be seen as an algorithmic analog of replacing the empirically undecidable question of statistical independence with practical independence tests that are based on implicit or explicit assumptions on the underlying distribution.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Recurrent Policy Gradients

Wierstra, D., Förster, A., Peters, J., Schmidhuber, J.

Logic Journal of the IGPL, 18(5):620-634, October 2010 (article)

Abstract
Reinforcement learning for partially observable Markov decision problems (POMDPs) is a challenge as it requires policies with an internal state. Traditional approaches suffer significantly from this shortcoming and usually make strong assumptions on the problem domain such as perfect system models, state-estimators and a Markovian hidden system. Recurrent neural networks (RNNs) offer a natural framework for dealing with policy learning using hidden state and require only few limiting assumptions. As they can be trained well using gradient descent, they are suited for policy gradient approaches. In this paper, we present a policy gradient method, the Recurrent Policy Gradient which constitutes a model-free reinforcement learning method. It is aimed at training limited-memory stochastic policies on problems which require long-term memories of past observations. The approach involves approximating a policy gradient for a recurrent neural network by backpropagating return-weighted characteristic eligibilities through time. Using a ‘‘Long Short-Term Memory’’ RNN architecture, we are able to outperform previous RL methods on three important benchmark tasks. Furthermore, we show that using history-dependent baselines helps reducing estimation variance significantly, thus enabling our approach to tackle more challenging, highly stochastic environments.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Discriminative frequent subgraph mining with optimality guarantees

Thoma, M., Cheng, H., Gretton, A., Han, J., Kriegel, H., Smola, A., Song, L., Yu, P., Yan, X., Borgwardt, K.

Journal of Statistical Analysis and Data Mining, 3(5):302–318, October 2010 (article)

Abstract
The goal of frequent subgraph mining is to detect subgraphs that frequently occur in a dataset of graphs. In classification settings, one is often interested in discovering discriminative frequent subgraphs, whose presence or absence is indicative of the class membership of a graph. In this article, we propose an approach to feature selection on frequent subgraphs, called CORK, that combines two central advantages. First, it optimizes a submodular quality criterion, which means that we can yield a near-optimal solution using greedy feature selection. Second, our submodular quality function criterion can be integrated into gSpan, the state-of-the-art tool for frequent subgraph mining, and help to prune the search space for discriminative frequent subgraphs even during frequent subgraph mining.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Combining active learning and reactive control for robot grasping

Kroemer, O., Detry, R., Piater, J., Peters, J.

Robotics and Autonomous Systems, 58(9):1105-1116, September 2010 (article)

Abstract
Grasping an object is a task that inherently needs to be treated in a hybrid fashion. The system must decide both where and how to grasp the object. While selecting where to grasp requires learning about the object as a whole, the execution only needs to reactively adapt to the context close to the grasp’s location. We propose a hierarchical controller that reflects the structure of these two sub-problems, and attempts to learn solutions that work for both. A hybrid architecture is employed by the controller to make use of various machine learning methods that can cope with the large amount of uncertainty inherent to the task. The controller’s upper level selects where to grasp the object using a reinforcement learner, while the lower level comprises an imitation learner and a vision-based reactive controller to determine appropriate grasping motions. The resulting system is able to quickly learn good grasps of a novel object in an unstructured environment, by executing smooth reaching motions and preshapin g the hand depending on the object’s geometry. The system was evaluated both in simulation and on a real robot.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Nonparametric Regression between General Riemannian Manifolds

Steinke, F., Hein, M., Schölkopf, B.

SIAM Journal on Imaging Sciences, 3(3):527-563, September 2010 (article)

Abstract
We study nonparametric regression between Riemannian manifolds based on regularized empirical risk minimization. Regularization functionals for mappings between manifolds should respect the geometry of input and output manifold and be independent of the chosen parametrization of the manifolds. We define and analyze the three most simple regularization functionals with these properties and present a rather general scheme for solving the resulting optimization problem. As application examples we discuss interpolation on the sphere, fingerprint processing, and correspondence computations between three-dimensional surfaces. We conclude with characterizing interesting and sometimes counterintuitive implications and new open problems that are specific to learning between Riemannian manifolds and are not encountered in multivariate regression in Euclidean space.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Hybrid PET/MRI of Intracranial Masses: Initial Experiences and Comparison to PET/CT

Boss, A., Bisdas, S., Kolb, A., Hofmann, M., Ernemann, U., Claussen, C., Pfannenberg, C., Pichler, B., Reimold, M., Stegger, L.

Journal of Nuclear Medicine, 51(8):1198-1205, August 2010 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models

Mooij, JM.

Journal of Machine Learning Research, 11, pages: 2169-2173, August 2010 (article)

Abstract
This paper describes the software package libDAI, a free & open source C++ library that provides implementations of various exact and approximate inference methods for graphical models with discrete-valued variables. libDAI supports directed graphical models (Bayesian networks) as well as undirected ones (Markov random fields and factor graphs). It offers various approximations of the partition sum, marginal probability distributions and maximum probability states. Parameter learning is also supported. A feature comparison with other open source software packages for approximate inference is given. libDAI is licensed under the GPL v2+ license and is available at http://www.libdai.org.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Convolutive blind source separation by efficient blind deconvolution and minimal filter distortion

Zhang, K., Chan, L.

Neurocomputing, 73(13-15):2580-2588, August 2010 (article)

Abstract
Convolutive blind source separation (BSS) usually encounters two difficulties—the filter indeterminacy in the recovered sources and the relatively high computational load. In this paper we propose an efficient method to convolutive BSS, by dealing with these two issues. It consists of two stages, namely, multichannel blind deconvolution (MBD) and learning the post-filters with the minimum filter distortion (MFD) principle. We present a computationally efficient approach to MBD in the first stage: a vector autoregression (VAR) model is first fitted to the data, admitting a closed-form solution and giving temporally independent errors; traditional independent component analysis (ICA) is then applied to these errors to produce the MBD results. In the second stage, the least linear reconstruction error (LLRE) constraint of the separation system, which was previously used to regularize the solutions to nonlinear ICA, enforces a MFD principle of the estimated mixing system for convolutive BSS. One can then easily learn the post-filters to preserve the temporal structure of the sources. We show that with this principle, each recovered source is approximately the principal component of the contributions of this source to all observations. Experimental results on both synthetic data and real room recordings show the good performance of this method.

ei

PDF PDF DOI [BibTex]


no image
Biased Feedback in Brain-Computer Interfaces

Barbero, A., Grosse-Wentrup, M.

Journal of NeuroEngineering and Rehabilitation, 7(34):1-4, July 2010 (article)

Abstract
Even though feedback is considered to play an important role in learning how to operate a brain-computer interface (BCI), to date no significant influence of feedback design on BCI-performance has been reported in literature. In this work, we adapt a standard motor-imagery BCI-paradigm to study how BCI-performance is affected by biasing the belief subjects have on their level of control over the BCI system. Our findings indicate that subjects already capable of operating a BCI are impeded by inaccurate feedback, while subjects normally performing on or close to chance level may actually benefit from an incorrect belief on their performance level. Our results imply that optimal feedback design in BCIs should take into account a subject‘s current skill level.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Varieties of Justification in Machine Learning

Corfield, D.

Minds and Machines, 20(2):291-301, July 2010 (article)

Abstract
Forms of justification for inductive machine learning techniques are discussed and classified into four types. This is done with a view to introduce some of these techniques and their justificatory guarantees to the attention of philosophers, and to initiate a discussion as to whether they must be treated separately or rather can be viewed consistently from within a single framework.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Dirichlet Process Gaussian Mixture Models: Choice of the Base Distribution

Görür, D., Rasmussen, C.

Journal of Computer Science and Technology, 25(4):653-664, July 2010 (article)

Abstract
In the Bayesian mixture modeling framework it is possible to infer the necessary number of components to model the data and therefore it is unnecessary to explicitly restrict the number of components. Nonparametric mixture models sidestep the problem of finding the “correct” number of mixture components by assuming infinitely many components. In this paper Dirichlet process mixture (DPM) models are cast as infinite mixture models and inference using Markov chain Monte Carlo is described. The specification of the priors on the model parameters is often guided by mathematical and practical convenience. The primary goal of this paper is to compare the choice of conjugate and non-conjugate base distributions on a particular class of DPM models which is widely used in applications, the Dirichlet process Gaussian mixture model (DPGMM). We compare computational efficiency and modeling performance of DPGMM defined using a conjugate and a conditionally conjugate base distribution. We show that better density models can result from using a wider class of priors with no or only a modest increase in computational effort.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Robust probabilistic superposition and comparison of protein structures

Mechelke, M., Habeck, M.

BMC Bioinformatics, 11(363):1-13, July 2010 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Results of the GREAT08 Challenge: An image analysis competition for cosmological lensing

Bridle, S., Balan, S., Bethge, M., Gentile, M., Harmeling, S., Heymans, C., Hirsch, M., Hosseini, R., Jarvis, M., Kirk, D., Kitching, T., Kuijken, K., Lewis, A., Paulin-Henriksson, S., Schölkopf, B., Velander, M., Voigt, L., Witherick, D., Amara, A., Bernstein, G., Courbin, F., Gill, M., Heavens, A., Mandelbaum, R., Massey, R., Moghaddam, B., Rassat, A., Refregier, A., Rhodes, J., Schrabback, T., Shawe-Taylor, J., Shmakova, M., van Waerbeke, L., Wittman, D.

Monthly Notices of the Royal Astronomical Society, 405(3):2044-2061, July 2010 (article)

Abstract
We present the results of the GREAT08 Challenge, a blind analysis challenge to infer weak gravitational lensing shear distortions from images. The primary goal was to stimulate new ideas by presenting the problem to researchers outside the shear measurement community. Six GREAT08 Team methods were presented at the launch of the Challenge and five additional groups submitted results during the 6 month competition. Participants analyzed 30 million simulated galaxies with a range in signal to noise ratio, point-spread function ellipticity, galaxy size, and galaxy type. The large quantity of simulations allowed shear measurement methods to be assessed at a level of accuracy suitable for currently planned future cosmic shear observations for the first time. Different methods perform well in different parts of simulation parameter space and come close to the target level of accuracy in several of these. A number of fresh ideas have emerged as a result of the Challenge including a re-examination of the process of combining information from different galaxies, which reduces the dependence on realistic galaxy modelling. The image simulations will become increasingly sophis- ticated in future GREAT challenges, meanwhile the GREAT08 simulations remain as a benchmark for additional developments in shear measurement algorithms.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Remote Sensing Feature Selection by Kernel Dependence Estimation

Camps-Valls, G., Mooij, J., Schölkopf, B.

IEEE Geoscience and Remote Sensing Letters, 7(3):587-591, July 2010 (article)

Abstract
This letter introduces a nonlinear measure of independence between random variables for remote sensing supervised feature selection. The so-called Hilbert–Schmidt independence criterion (HSIC) is a kernel method for evaluating statistical dependence and it is based on computing the Hilbert–Schmidt norm of the cross-covariance operator of mapped samples in the corresponding Hilbert spaces. The HSIC empirical estimator is easy to compute and has good theoretical and practical properties. Rather than using this estimate for maximizing the dependence between the selected features and the class labels, we propose the more sensitive criterion of minimizing the associated HSIC p-value. Results in multispectral, hyperspectral, and SAR data feature selection for classification show the good performance of the proposed approach.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Clustering stability: an overview

von Luxburg, U.

Foundations and Trends in Machine Learning, 2(3):235-274, July 2010 (article)

Abstract
A popular method for selecting the number of clusters is based on stability arguments: one chooses the number of clusters such that the corresponding clustering results are "most stable". In recent years, a series of papers has analyzed the behavior of this method from a theoretical point of view. However, the results are very technical and difficult to interpret for non-experts. In this paper we give a high-level overview about the existing literature on clustering stability. In addition to presenting the results in a slightly informal but accessible way, we relate them to each other and discuss their different implications.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Justifying Additive Noise Model-Based Causal Discovery via Algorithmic Information Theory

Janzing, D., Steudel, B.

Open Systems and Information Dynamics, 17(2):189-212, June 2010 (article)

Abstract
A recent method for causal discovery is in many cases able to infer whether X causes Y or Y causes X for just two observed variables X and Y. It is based on the observation that there exist (non-Gaussian) joint distributions P(X,Y) for which Y may be written as a function of X up to an additive noise term that is independent of X and no such model exists from Y to X. Whenever this is the case, one prefers the causal model X → Y. Here we justify this method by showing that the causal hypothesis Y → X is unlikely because it requires a specific tuning between P(Y) and P(X|Y) to generate a distribution that admits an additive noise model from X to Y. To quantify the amount of tuning, needed we derive lower bounds on the algorithmic information shared by P(Y) and P(X|Y). This way, our justification is consistent with recent approaches for using algorithmic information theory for causal reasoning. We extend this principle to the case where P(X,Y) almost admits an additive noise model. Our results suggest that the above conclusion is more reliable if the complexity of P(Y) is high.

ei

PDF Web DOI [BibTex]


no image
Dynamic Dissimilarity Measure for Support-Based Clustering

Lee, D., Lee, J.

IEEE Transactions on Knowledge and Data Engineering, 22(6):900-905, June 2010 (article)

Abstract
Clustering methods utilizing support estimates of a data distribution have recently attracted much attention because of their ability to generate cluster boundaries of arbitrary shape and to deal with outliers efficiently. In this paper, we propose a novel dissimilarity measure based on a dynamical system associated with support estimating functions. Theoretical foundations of the proposed measure are developed and applied to construct a clustering method that can effectively partition the whole data space. Simulation results demonstrate that clustering based on the proposed dissimilarity measure is robust to the choice of kernel parameters and able to control the number of clusters efficiently.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Sparse Spectrum Gaussian Process Regression

Lázaro-Gredilla, M., Quiñonero-Candela, J., Rasmussen, CE., Figueiras-Vidal, AR.

Journal of Machine Learning Research, 11, pages: 1865-1881, June 2010 (article)

Abstract
We present a new sparse Gaussian Process (GP) model for regression. The key novel idea is to sparsify the spectral representation of the GP. This leads to a simple, practical algorithm for regression tasks. We compare the achievable trade-offs between predictive accuracy and computational requirements, and show that these are typically superior to existing state-of-the-art sparse approximations. We discuss both the weight space and function space representations, and note that the new construction implies priors over functions which are always stationary, and can approximate any covariance function in this class.

ei

PDF [BibTex]

PDF [BibTex]


no image
Unsupervised Object Discovery: A Comparison

Tuytelaars, T., Lampert, CH., Blaschko, MB., Buntine, W.

International Journal of Computer Vision, 88(2):284-302, June 2010 (article)

Abstract
The goal of this paper is to evaluate and compare models and methods for learning to recognize basic entities in images in an unsupervised setting. In other words, we want to discover the objects present in the images by analyzing unlabeled data and searching for re-occurring patterns. We experiment with various baseline methods, methods based on latent variable models, as well as spectral clustering methods. The results are presented and compared both on subsets of Caltech256 and MSRC2, data sets that are larger and more challenging and that include more object classes than what has previously been reported in the literature. A rigorous framework for evaluating unsupervised object discovery methods is proposed.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
How to Explain Individual Classification Decisions

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.

Journal of Machine Learning Research, 11, pages: 1803-1831, June 2010 (article)

Abstract
After building a classifier with modern tools of machine learning we typically have a black box at hand that is able to predict well for unseen data. Thus, we get an answer to the question what is the most likely label of a given unseen data point. However, most methods will provide no answer why the model predicted a particular label for a single instance and what features were most influential for that particular instance. The only method that is currently able to provide such explanations are decision trees. This paper proposes a procedure which (based on a set of assumptions) allows to explain the decisions of any classification method.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Single-Image Super-Resolution Using Sparse Regression and Natural Image Prior

Kim, K., Kwon, Y.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(6):1127-1133, June 2010 (article)

Abstract
This paper proposes a framework for single-image super-resolution. The underlying idea is to learn a map from input low-resolution images to target high-resolution images based on example pairs of input and output images. Kernel ridge regression (KRR) is adopted for this purpose. To reduce the time complexity of training and testing for KRR, a sparse solution is found by combining the ideas of kernel matching pursuit and gradient descent. As a regularized solution, KRR leads to a better generalization than simply storing the examples as has been done in existing example-based algorithms and results in much less noisy images. However, this may introduce blurring and ringing artifacts around major edges as sharp changes are penalized severely. A prior model of a generic image class which takes into account the discontinuity property of images is adopted to resolve this problem. Comparison with existing algorithms shows the effectiveness of the proposed method.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Imitation and Reinforcement Learning

Kober, J., Peters, J.

IEEE Robotics and Automation Magazine, 17(2):55-62, June 2010 (article)

Abstract
In this article, we present both novel learning algorithms and experiments using the dynamical system MPs. As such, we describe this MP representation in a way that it is straightforward to reproduce. We review an appropriate imitation learning method, i.e., locally weighted regression, and show how this method can be used both for initializing RL tasks as well as for modifying the start-up phase in a rhythmic task. We also show our current best-suited RL algorithm for this framework, i.e., PoWER. We present two complex motor tasks, i.e., ball-in-a-cup and ball paddling, learned on a real, physical Barrett WAM, using the methods presented in this article. Of particular interest is the ball-paddling application, as it requires a combination of both rhythmic and discrete dynamical systems MPs during the start-up phase to achieve a particular task.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Diffusion Tensor Imaging in a Human PET/MR Hybrid System

Boss, A., Kolb, A., Hofmann, M., Bisdas, S., Nägele, T., Ernemann, U., Stegger, L., Rossi, C., Schlemmer, H., Pfannenberg, C., Reimold, M., Claussen, C., Pichler, B., Klose, U.

Investigative Radiology, 45(5):270-274, May 2010 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]