Header logo is


2018


Role of symmetry in driven propulsion at low Reynolds number
Role of symmetry in driven propulsion at low Reynolds number

Sachs, J., Morozov, K. I., Kenneth, O., Qiu, T., Segreto, N., Fischer, P., Leshansky, A. M.

Phys. Rev. E, 98(6):063105, American Physical Society, December 2018 (article)

Abstract
We theoretically and experimentally investigate low-Reynolds-number propulsion of geometrically achiral planar objects that possess a dipole moment and that are driven by a rotating magnetic field. Symmetry considerations (involving parity, $\widehat{P}$, and charge conjugation, $\widehat{C}$) establish correspondence between propulsive states depending on orientation of the dipolar moment. Although basic symmetry arguments do not forbid individual symmetric objects to efficiently propel due to spontaneous symmetry breaking, they suggest that the average ensemble velocity vanishes. Some additional arguments show, however, that highly symmetrical ($\widehat{P}$-even) objects exhibit no net propulsion while individual less symmetrical ($\widehat{C}\widehat{P}$-even) propellers do propel. Particular magnetization orientation, rendering the shape $\widehat{C}\widehat{P}$-odd, yields unidirectional motion typically associated with chiral structures, such as helices. If instead of a structure with a permanent dipole we consider a polarizable object, some of the arguments have to be modified. For instance, we demonstrate a truly achiral ($\widehat{P}$- and $\widehat{C}\widehat{P}$-even) planar shape with an induced electric dipole that can propel by electro-rotation. We thereby show that chirality is not essential for propulsion due to rotation-translation coupling at low Reynolds number.

pf

link (url) DOI Project Page [BibTex]

2018


link (url) DOI Project Page [BibTex]


Optical and Thermophoretic Control of Janus Nanopen Injection into Living Cells
Optical and Thermophoretic Control of Janus Nanopen Injection into Living Cells

Maier, C. M., Huergo, M. A., Milosevic, S., Pernpeintner, C., Li, M., Singh, D. P., Walker, D., Fischer, P., Feldmann, J., Lohmüller, T.

Nano Letters, 18, pages: 7935–7941, November 2018 (article) Accepted

Abstract
Devising strategies for the controlled injection of functional nanoparticles and reagents into living cells paves the way for novel applications in nanosurgery, sensing, and drug delivery. Here, we demonstrate the light-controlled guiding and injection of plasmonic Janus nanopens into living cells. The pens are made of a gold nanoparticle attached to a dielectric alumina shaft. Balancing optical and thermophoretic forces in an optical tweezer allows single Janus nanopens to be trapped and positioned on the surface of living cells. While the optical injection process involves strong heating of the plasmonic side, the temperature of the alumina stays significantly lower, thus allowing the functionalization with fluorescently labeled, single-stranded DNA and, hence, the spatially controlled injection of genetic material with an untethered nanocarrier.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


A swarm of slippery micropropellers penetrates the vitreous body of the eye
A swarm of slippery micropropellers penetrates the vitreous body of the eye

Wu, Z., Troll, J., Jeong, H. H., Wei, Q., Stang, M., Ziemssen, F., Wang, Z., Dong, M., Schnichels, S., Qiu, T., Fischer, P.

Science Advances, 4(11):eaat4388, November 2018 (article)

Abstract
The intravitreal delivery of therapeutic agents promises major benefits in the field of ocular medicine. Traditional delivery methods rely on the random, passive diffusion of molecules, which do not allow for the rapid delivery of a concentrated cargo to a defined region at the posterior pole of the eye. The use of particles promises targeted delivery but faces the challenge that most tissues including the vitreous have a tight macromolecular matrix that acts as a barrier and prevents its penetration. Here, we demonstrate novel intravitreal delivery microvehicles slippery micropropellers that can be actively propelled through the vitreous humor to reach the retina. The propulsion is achieved by helical magnetic micropropellers that have a liquid layer coating to minimize adhesion to the surrounding biopolymeric network. The submicrometer diameter of the propellers enables the penetration of the biopolymeric network and the propulsion through the porcine vitreous body of the eye over centimeter distances. Clinical optical coherence tomography is used to monitor the movement of the propellers and confirm their arrival on the retina near the optic disc. Overcoming the adhesion forces and actively navigating a swarm of micropropellers in the dense vitreous humor promise practical applications in ophthalmology.

pf

Video: Nanorobots propel through the eye link (url) DOI [BibTex]

Video: Nanorobots propel through the eye link (url) DOI [BibTex]


Gait learning for soft microrobots controlled by light fields
Gait learning for soft microrobots controlled by light fields

Rohr, A. V., Trimpe, S., Marco, A., Fischer, P., Palagi, S.

In International Conference on Intelligent Robots and Systems (IROS) 2018, pages: 6199-6206, International Conference on Intelligent Robots and Systems 2018, October 2018 (inproceedings)

Abstract
Soft microrobots based on photoresponsive materials and controlled by light fields can generate a variety of different gaits. This inherent flexibility can be exploited to maximize their locomotion performance in a given environment and used to adapt them to changing environments. However, because of the lack of accurate locomotion models, and given the intrinsic variability among microrobots, analytical control design is not possible. Common data-driven approaches, on the other hand, require running prohibitive numbers of experiments and lead to very sample-specific results. Here we propose a probabilistic learning approach for light-controlled soft microrobots based on Bayesian Optimization (BO) and Gaussian Processes (GPs). The proposed approach results in a learning scheme that is highly data-efficient, enabling gait optimization with a limited experimental budget, and robust against differences among microrobot samples. These features are obtained by designing the learning scheme through the comparison of different GP priors and BO settings on a semisynthetic data set. The developed learning scheme is validated in microrobot experiments, resulting in a 115% improvement in a microrobot’s locomotion performance with an experimental budget of only 20 tests. These encouraging results lead the way toward self-adaptive microrobotic systems based on lightcontrolled soft microrobots and probabilistic learning control.

ics pf

arXiv IEEE Xplore DOI Project Page [BibTex]

arXiv IEEE Xplore DOI Project Page [BibTex]


Nanoscale robotic agents in biological fluids and tissues
Nanoscale robotic agents in biological fluids and tissues

Palagi, S., Walker, D. Q. T., Fischer, P.

In The Encyclopedia of Medical Robotics, 2, pages: 19-42, 2, (Editors: Desai, J. P. and Ferreira, A.), World Scientific, October 2018 (inbook)

Abstract
Nanorobots are untethered structures of sub-micron size that can be controlled in a non-trivial way. Such nanoscale robotic agents are envisioned to revolutionize medicine by enabling minimally invasive diagnostic and therapeutic procedures. To be useful, nanorobots must be operated in complex biological fluids and tissues, which are often difficult to penetrate. In this chapter, we first discuss potential medical applications of motile nanorobots. We briefly present the challenges related to swimming at such small scales and we survey the rheological properties of some biological fluids and tissues. We then review recent experimental results in the development of nanorobots and in particular their design, fabrication, actuation, and propulsion in complex biological fluids and tissues. Recent work shows that their nanoscale dimension is a clear asset for operation in biological tissues, since many biological tissues consist of networks of macromolecules that prevent the passage of larger micron-scale structures, but contain dynamic pores through which nanorobots can move.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Fast spatial scanning of 3D ultrasound fields via thermography
Fast spatial scanning of 3D ultrasound fields via thermography

Melde, K., Qiu, T., Fischer, P.

Applied Physics Letters, 113(13):133503, September 2018 (article)

Abstract
We propose and demonstrate a thermographic method that allows rapid scanning of ultrasound fields in a volume to yield 3D maps of the sound intensity. A thin sound-absorbing membrane is continuously translated through a volume of interest while a thermal camera records the evolution of its surface temperature. The temperature rise is a function of the absorbed sound intensity, such that the thermal image sequence can be combined to reveal the sound intensity distribution in the traversed volume. We demonstrate the mapping of ultrasound fields, which is several orders of magnitude faster than scanning with a hydrophone. Our results are in very good agreement with theoretical simulations.

pf

link (url) DOI Project Page [BibTex]


no image
Discovering and Teaching Optimal Planning Strategies

Lieder, F., Callaway, F., Krueger, P. M., Das, P., Griffiths, T. L., Gul, S.

In The 14th biannual conference of the German Society for Cognitive Science, GK, September 2018, Falk Lieder and Frederick Callaway contributed equally to this publication. (inproceedings)

Abstract
How should we think and decide, and how can we learn to make better decisions? To address these questions we formalize the discovery of cognitive strategies as a metacognitive reinforcement learning problem. This formulation leads to a computational method for deriving optimal cognitive strategies and a feedback mechanism for accelerating the process by which people learn how to make better decisions. As a proof of concept, we apply our approach to develop an intelligent system that teaches people optimal planning stratgies. Our training program combines a novel process-tracing paradigm that makes peoples latent planning strategies observable with an intelligent system that gives people feedback on how their planning strategy could be improved. The pedagogy of our intelligent tutor is based on the theory that people discover their cognitive strategies through metacognitive reinforcement learning. Concretely, the tutor’s feedback is designed to maximally accelerate people’s metacognitive reinforcement learning towards the optimal cognitive strategy. A series of four experiments confirmed that training with the cognitive tutor significantly improved people’s decision-making competency: Experiment 1 demonstrated that the cognitive tutor’s feedback accelerates participants’ metacognitive learning. Experiment 2 found that this training effect transfers to more difficult planning problems in more complex environments. Experiment 3 found that these transfer effects are retained for at least 24 hours after the training. Finally, Experiment 4 found that practicing with the cognitive tutor conveys additional benefits above and beyond verbal description of the optimal planning strategy. The results suggest that promoting metacognitive reinforcement learning with optimal feedback is a promising approach to improving the human mind.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Discovering Rational Heuristics for Risky Choice

Gul, S., Krueger, P. M., Callaway, F., Griffiths, T. L., Lieder, F.

The 14th biannual conference of the German Society for Cognitive Science, GK, The 14th biannual conference of the German Society for Cognitive Science, GK, September 2018 (conference)

Abstract
How should we think and decide to make the best possible use of our precious time and limited cognitive resources? And how do people’s cognitive strategies compare to this ideal? We study these questions in the domain of multi-alternative risky choice using the methodology of resource-rational analysis. To answer the first question, we leverage a new meta-level reinforcement learning algorithm to derive optimal heuristics for four different risky choice environments. We find that our method rediscovers two fast-and-frugal heuristics that people are known to use, namely Take-The-Best and choosing randomly, as resource-rational strategies for specific environments. Our method also discovered a novel heuristic that combines elements of Take-The-Best and Satisficing. To answer the second question, we use the Mouselab paradigm to measure how people’s decision strategies compare to the predictions of our resource-rational analysis. We found that our resource-rational analysis correctly predicted which strategies people use and under which conditions they use them. While people generally tend to make rational use of their limited resources overall, their strategy choices do not always fully exploit the structure of each decision problem. Overall, people’s decision operations were about 88% as resource-rational as they could possibly be. A formal model comparison confirmed that our resource-rational model explained people’s decision strategies significantly better than the Directed Cognition model of Gabaix et al. (2006). Our study is a proof-of-concept that optimal cognitive strategies can be automatically derived from the principle of resource-rationality. Our results suggest that resource-rational analysis is a promising approach for uncovering people’s cognitive strategies and revisiting the debate about human rationality with a more realistic normative standard.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Diffusion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy
Diffusion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy

Günther, J., Börsch, M., Fischer, P.

Accounts of Chemical Research, 51(9):1911-1920, August 2018 (article)

Abstract
Self-propelled chemical motors are chemically powered micro- or nanosized swimmers. The energy required for these motors’ active motion derives from catalytic chemical reactions and the transformation of a fuel dissolved in the solution. While self-propulsion is now well established for larger particles, it is still unclear if enzymes, nature’s nanometer-sized catalysts, are potentially also self-powered nanomotors. Because of its small size, any increase in an enzyme’s diffusion due to active self-propulsion must be observed on top of the enzyme’s passive Brownian motion, which dominates at this scale. Fluorescence correlation spectroscopy (FCS) is a sensitive method to quantify the diffusion properties of single fluorescently labeled molecules in solution. FCS experiments have shown a general increase in the diffusion constant of a number of enzymes when the enzyme is catalytically active. Diffusion enhancements after addition of the enzyme’s substrate (and sometimes its inhibitor) of up to 80\% have been reported, which is at least 1 order of magnitude higher than what theory would predict. However, many factors contribute to the FCS signal and in particular the shape of the autocorrelation function, which underlies diffusion measurements by fluorescence correlation spectroscopy. These effects need to be considered to establish if and by how much the catalytic activity changes an enzyme’s diffusion.We carefully review phenomena that can play a role in FCS experiments and the determination of enzyme diffusion, including the dissociation of enzyme oligomers upon interaction with the substrate, surface binding of the enzyme to glass during the experiment, conformational changes upon binding, and quenching of the fluorophore. We show that these effects can cause changes in the FCS signal that behave similar to an increase in diffusion. However, in the case of the enzymes F1-ATPase and alkaline phosphatase, we demonstrate that there is no measurable increase in enzyme diffusion. Rather, dissociation and conformational changes account for the changes in the FCS signal in the former and fluorophore quenching in the latter. Within the experimental accuracy of our FCS measurements, we do not observe any change in diffusion due to activity for the enzymes we have investigated.We suggest useful control experiments and additional tests for future FCS experiments that should help establish if the observed diffusion enhancement is real or if it is due to an experimental or data analysis artifact. We show that fluorescence lifetime and mean intensity measurements are essential in order to identify the nature of the observed changes in the autocorrelation function. While it is clear from theory that chemically active enzymes should also act as self-propelled nanomotors, our FCS measurements show that the associated increase in diffusion is much smaller than previously reported. Further experiments are needed to quantify the contribution of the enzymes’ catalytic activity to their self-propulsion. We hope that our findings help to establish a useful protocol for future FCS studies in this field and help establish by how much the diffusion of an enzyme is enhanced through catalytic activity.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Uphill production of dihydrogen by enzymatic oxidation of glucose without an external energy source
Uphill production of dihydrogen by enzymatic oxidation of glucose without an external energy source

Suraniti, E., Merzeau, P., Roche, J., Gounel, S., Mark, A. G., Fischer, P., Mano, N., Kuhn, A.

Nature Communications, 9(1):3229, August 2018 (article)

Abstract
Chemical systems do not allow the coupling of energy from several simple reactions to drive a subsequent reaction, which takes place in the same medium and leads to a product with a higher energy than the one released during the first reaction. Gibbs energy considerations thus are not favorable to drive e.g., water splitting by the direct oxidation of glucose as a model reaction. Here, we show that it is nevertheless possible to carry out such an energetically uphill reaction, if the electrons released in the oxidation reaction are temporarily stored in an electromagnetic system, which is then used to raise the electrons' potential energy so that they can power the electrolysis of water in a second step. We thereby demonstrate the general concept that lower energy delivering chemical reactions can be used to enable the formation of higher energy consuming reaction products in a closed system.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Chemical micromotors self-assemble and self-propel by spontaneous symmetry breaking
Chemical micromotors self-assemble and self-propel by spontaneous symmetry breaking

Yu, T., Chuphal, P., Thakur, S., Reigh, S. Y., Singh, D. P., Fischer, P.

Chem. Comm., 54, pages: 11933-11936, August 2018 (article)

Abstract
Self-propelling chemical motors have thus far required the fabrication of Janus particles with an asymmetric catalyst distribution. Here, we demonstrate that simple, isotropic colloids can spontaneously assemble to yield dimer motors that self-propel. In a mixture of isotropic titanium dioxide colloids with photo-chemical catalytic activity and passive silica colloids, light illumination causes diffusiophoretic attractions between the active and passive particles and leads to the formation of dimers. The dimers constitute a symmetry-broken motor, whose dynamics can be fully controlled by the illumination conditions. Computer simulations reproduce the dynamics of the colloids and are in good agreement with experiments. The current work presents a simple route to obtain large numbers of self-propelling chemical motors from a dispersion of spherically symmetric colloids through spontaneous symmetry breaking.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning to Select Computations

Callaway, F., Gul, S., Krueger, P. M., Griffiths, T. L., Lieder, F.

In Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference, August 2018, Frederick Callaway and Sayan Gul and Falk Lieder contributed equally to this publication. (inproceedings)

Abstract
The efficient use of limited computational resources is an essential ingredient of intelligence. Selecting computations optimally according to rational metareasoning would achieve this, but this is computationally intractable. Inspired by psychology and neuroscience, we propose the first concrete and domain-general learning algorithm for approximating the optimal selection of computations: Bayesian metalevel policy search (BMPS). We derive this general, sample-efficient search algorithm for a computation-selecting metalevel policy based on the insight that the value of information lies between the myopic value of information and the value of perfect information. We evaluate BMPS on three increasingly difficult metareasoning problems: when to terminate computation, how to allocate computation between competing options, and planning. Across all three domains, BMPS achieved near-optimal performance and compared favorably to previously proposed metareasoning heuristics. Finally, we demonstrate the practical utility of BMPS in an emergency management scenario, even accounting for the overhead of metareasoning.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


A machine from machines
A machine from machines

Fischer, P.

Nature Physics, 14, pages: 1072–1073, July 2018 (misc)

Abstract
Building spinning microrotors that self-assemble and synchronize to form a gear sounds like an impossible feat. However, it has now been achieved using only a single type of building block -- a colloid that self-propels.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Chemotaxis of Active Janus Nanoparticles
Chemotaxis of Active Janus Nanoparticles

Popescu, M. N., Uspal, W. E., Bechinger, C., Fischer, P.

Nano Letters, 18(9):5345–5349, July 2018 (article)

Abstract
While colloids and molecules in solution exhibit passive Brownian motion, particles that are partially covered with a catalyst, which promotes the transformation of a fuel dissolved in the solution, can actively move. These active Janus particles are known as “chemical nanomotors” or self-propelling “swimmers” and have been realized with a range of catalysts, sizes, and particle geometries. Because their active translation depends on the fuel concentration, one expects that active colloidal particles should also be able to swim toward a fuel source. Synthesizing and engineering nanoparticles with distinct chemotactic properties may enable important developments, such as particles that can autonomously swim along a pH gradient toward a tumor. Chemotaxis requires that the particles possess an active coupling of their orientation to a chemical gradient. In this Perspective we provide a simple, intuitive description of the underlying mechanisms for chemotaxis, as well as the means to analyze and classify active particles that can show positive or negative chemotaxis. The classification provides guidance for engineering a specific response and is a useful organizing framework for the quantitative analysis and modeling of chemotactic behaviors. Chemotaxis is emerging as an important focus area in the field of active colloids and promises a number of fascinating applications for nanoparticles and particle-based delivery.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Robust Physics-based Motion Retargeting with Realistic Body Shapes
Robust Physics-based Motion Retargeting with Realistic Body Shapes

Borno, M. A., Righetti, L., Black, M. J., Delp, S. L., Fiume, E., Romero, J.

Computer Graphics Forum, 37, pages: 6:1-12, July 2018 (article)

Abstract
Motion capture is often retargeted to new, and sometimes drastically different, characters. When the characters take on realistic human shapes, however, we become more sensitive to the motion looking right. This means adapting it to be consistent with the physical constraints imposed by different body shapes. We show how to take realistic 3D human shapes, approximate them using a simplified representation, and animate them so that they move realistically using physically-based retargeting. We develop a novel spacetime optimization approach that learns and robustly adapts physical controllers to new bodies and constraints. The approach automatically adapts the motion of the mocap subject to the body shape of a target subject. This motion respects the physical properties of the new body and every body shape results in a different and appropriate movement. This makes it easy to create a varied set of motions from a single mocap sequence by simply varying the characters. In an interactive environment, successful retargeting requires adapting the motion to unexpected external forces. We achieve robustness to such forces using a novel LQR-tree formulation. We show that the simulated motions look appropriate to each character’s anatomy and their actions are robust to perturbations.

mg ps

pdf video Project Page Project Page [BibTex]

pdf video Project Page Project Page [BibTex]


Colloidal Chemical Nanomotors
Colloidal Chemical Nanomotors

Alarcon-Correa, M.

Colloidal Chemical Nanomotors, pages: 150, Cuvillier Verlag, MPI-IS , June 2018 (phdthesis)

Abstract
Synthetic sophisticated nanostructures represent a fundamental building block for the development of nanotechnology. The fabrication of nanoparticles complex in structure and material composition is key to build nanomachines that can operate as man-made nanoscale motors, which autonomously convert external energy into motion. To achieve this, asymmetric nanoparticles were fabricated combining a physical vapor deposition technique known as NanoGLAD and wet chemical synthesis. This thesis primarily concerns three complex colloidal systems that have been developed: i)Hollow nanocup inclusion complexes that have a single Au nanoparticle in their pocket. The Au particle can be released with an external trigger. ii)The smallest self-propelling nanocolloids that have been made to date, which give rise to a local concentration gradient that causes enhanced diffusion of the particles. iii)Enzyme-powered pumps that have been assembled using bacteriophages as biological nanoscaffolds. This construct also can be used for enzyme recovery after heterogeneous catalysis.

pf

[BibTex]

[BibTex]


Bioinspired microrobots
Bioinspired microrobots

Palagi, S., Fischer, P.

Nature Reviews Materials, 3, pages: 113–124, May 2018 (article)

Abstract
Microorganisms can move in complex media, respond to the environment and self-organize. The field of microrobotics strives to achieve these functions in mobile robotic systems of sub-millimetre size. However, miniaturization of traditional robots and their control systems to the microscale is not a viable approach. A promising alternative strategy in developing microrobots is to implement sensing, actuation and control directly in the materials, thereby mimicking biological matter. In this Review, we discuss design principles and materials for the implementation of robotic functionalities in microrobots. We examine different biological locomotion strategies, and we discuss how they can be artificially recreated in magnetic microrobots and how soft materials improve control and performance. We show that smart, stimuli-responsive materials can act as on-board sensors and actuators and that ‘active matter’ enables autonomous motion, navigation and collective behaviours. Finally, we provide a critical outlook for the field of microrobotics and highlight the challenges that need to be overcome to realize sophisticated microrobots, which one day might rival biological machines.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Soft Miniaturized Linear Actuators Wirelessly Powered by Rotating Permanent Magnets
Soft Miniaturized Linear Actuators Wirelessly Powered by Rotating Permanent Magnets

Qiu, T., Palagi, S., Sachs, J., Fischer, P.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 3595-3600, May 2018 (inproceedings)

Abstract
Wireless actuation by magnetic fields allows for the operation of untethered miniaturized devices, e.g. in biomedical applications. Nevertheless, generating large controlled forces over relatively large distances is challenging. Magnetic torques are easier to generate and control, but they are not always suitable for the tasks at hand. Moreover, strong magnetic fields are required to generate a sufficient torque, which are difficult to achieve with electromagnets. Here, we demonstrate a soft miniaturized actuator that transforms an externally applied magnetic torque into a controlled linear force. We report the design, fabrication and characterization of both the actuator and the magnetic field generator. We show that the magnet assembly, which is based on a set of rotating permanent magnets, can generate strong controlled oscillating fields over a relatively large workspace. The actuator, which is 3D-printed, can lift a load of more than 40 times its weight. Finally, we show that the actuator can be further miniaturized, paving the way towards strong, wirelessly powered microactuators.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


A resource-rational analysis of human planning
A resource-rational analysis of human planning

Callaway, F., Lieder, F., Das, P., Gul, S., Krueger, P. M., Griffiths, T. L.

In Proceedings of the 40th Annual Conference of the Cognitive Science Society, May 2018, Frederick Callaway and Falk Lieder contributed equally to this publication. (inproceedings)

Abstract
People's cognitive strategies are jointly shaped by function and computational constraints. Resource-rational analysis leverages these constraints to derive rational models of people's cognitive strategies from the assumption that people make rational use of limited cognitive resources. We present a resource-rational analysis of planning and evaluate its predictions in a newly developed process tracing paradigm. In Experiment 1, we find that a resource-rational planning strategy predicts the process by which people plan more accurately than previous models of planning. Furthermore, in Experiment 2, we find that it also captures how people's planning strategies adapt to the structure of the environment. In addition, our approach allows us to quantify for the first time how close people's planning strategies are to being resource-rational and to characterize in which ways they conform to and deviate from optimal planning.

re

DOI [BibTex]

DOI [BibTex]


Graphene-silver hybrid devices for sensitive photodetection in the ultraviolet
Graphene-silver hybrid devices for sensitive photodetection in the ultraviolet

Paria, D., Jeong, H. H., Vadakkumbatt, V., Deshpande, P., Fischer, P., Ghosh, A., Ghosh, A.

Nanoscale, 10, pages: 7685-7693, April 2018 (article)

Abstract
The weak light-matter interaction in graphene can be enhanced with a number of strategies, among which sensitization with plasmonic nanostructures is particularly attractive. This has resulted in the development of graphene-plasmonic hybrid systems with strongly enhanced photodetection efficiencies in the visible and the IR, but none in the UV. Here, we describe a silver nanoparticle-graphene stacked optoelectronic device that shows strong enhancement of its photoresponse across the entire UV spectrum. The device fabrication strategy is scalable and modular. Self-assembly techniques are combined with physical shadow growth techniques to fabricate a regular large-area array of 50 nm silver nanoparticles onto which CVD graphene is transferred. The presence of the silver nanoparticles resulted in a plasmonically enhanced photoresponse as high as 3.2 A W-1 in the wavelength range from 330 nm to 450 nm. At lower wavelengths, close to the Van Hove singularity of the density of states in graphene, we measured an even higher responsivity of 14.5 A W-1 at 280 nm, which corresponds to a more than 10 000-fold enhancement over the photoresponse of native graphene.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Nanoparticles on the move for medicine
Nanoparticles on the move for medicine

Fischer, P.

Physics World Focus on Nanotechnology, pages: 26028, (Editors: Margaret Harris), IOP Publishing Ltd and individual contributors, April 2018 (article)

Abstract
Peer Fischer outlines the prospects for creating “nanoswimmers” that can be steered through the body to deliver drugs directly to their targets Molecules don’t move very fast on their own. If they had to rely solely on diffusion – a slow and inefficient process linked to the Brownian motion of small particles and molecules in solution – then a protein mole­cule, for instance, would take around three weeks to travel a single centimetre down a nerve fibre. This is why active transport mechanisms exist in cells and in the human body: without them, all the processes of life would happen at a pace that would make snails look speedy.

pf

link (url) [BibTex]

link (url) [BibTex]


no image
Rational metareasoning and the plasticity of cognitive control

Lieder, F., Shenhav, A., Musslick, S., Griffiths, T. L.

PLOS Computational Biology, 14(4):e1006043, Public Library of Science, April 2018 (article)

Abstract
The human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert. We derive this model from a general theory according to which the function of cognitive control is to select and configure neural pathways so as to make optimal use of finite time and limited computational resources. The central idea of our Learned Value of Control model is that people use reinforcement learning to predict the value of candidate control signals of different types and intensities based on stimulus features. This model correctly predicts the learning and transfer effects underlying the adaptive control-demanding behavior observed in an experiment on visual attention and four experiments on interference control in Stroop and Flanker paradigms. Moreover, our model explained these findings significantly better than an associative learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and experience might shape people’s ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure.

re

Rational metareasoning and the plasticity of cognitive control DOI Project Page Project Page [BibTex]

Rational metareasoning and the plasticity of cognitive control DOI Project Page Project Page [BibTex]


Photogravitactic Microswimmers
Photogravitactic Microswimmers

Singh, D. P., Uspal, W. E., Popescu, M. N., Wilson, L. G., Fischer, P.

Adv. Func. Mat., 28, pages: 1706660, Febuary 2018 (article)

Abstract
Abstract Phototactic microorganisms are commonly observed to respond to natural sunlight by swimming upward against gravity. This study demonstrates that synthetic photochemically active microswimmers can also swim against gravity. The particles initially sediment and, when illuminated at low light intensities exhibit wall‐bound states of motion near the bottom surface. Upon increasing the intensity of light, the artificial swimmers lift off from the wall and swim against gravity and away from the light source. This motion in the bulk has been further confirmed using holographic microscopy. A theoretical model is presented within the framework of self‐diffusiophoresis, which allows to unequivocally identify the photochemical activity and the phototactic response as key mechanisms in the observed phenomenology. Since the lift‐off threshold intensity depends on the particle size, it can be exploited to selectively address particles with the same density from a polydisperse mixture of active particles and move them in or out of the boundary region. This study provides a simple design strategy to fabricate artificial microswimmers whose two‐ or three‐dimensional swimming behavior can be controlled with light.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Chiral Plasmonic Hydrogen Sensors
Chiral Plasmonic Hydrogen Sensors

Matuschek, M., Singh, D. P., Hyeon-Ho, J., Nesterov, M., Weiss, T., Fischer, P., Neubrech, F., Na Liu, L.

Small, 14(7):1702990, Febuary 2018 (article)

Abstract
In this article, a chiral plasmonic hydrogen‐sensing platform using palladium‐based nanohelices is demonstrated. Such 3D chiral nanostructures fabricated by nanoglancing angle deposition exhibit strong circular dichroism both experimentally and theoretically. The chiroptical properties of the palladium nanohelices are altered upon hydrogen uptake and sensitively depend on the hydrogen concentration. Such properties are well suited for remote and spark‐free hydrogen sensing in the flammable range. Hysteresis is reduced, when an increasing amount of gold is utilized in the palladium‐gold hybrid helices. As a result, the linearity of the circular dichroism in response to hydrogen is significantly improved. The chiral plasmonic sensor scheme is of potential interest for hydrogen‐sensing applications, where good linearity and high sensitivity are required.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Acoustic Fabrication via the Assembly and Fusion of Particles
Acoustic Fabrication via the Assembly and Fusion of Particles

Melde, K., Choi, E., Wu, Z., Palagi, S., Qiu, T., Fischer, P.

Advanced Materials, 30(3):1704507, January 2018 (article)

Abstract
Acoustic assembly promises a route toward rapid parallel fabrication of whole objects directly from solution. This study reports the contact-free and maskless assembly, and fixing of silicone particles into arbitrary 2D shapes using ultrasound fields. Ultrasound passes through an acoustic hologram to form a target image. The particles assemble from a suspension along lines of high pressure in the image due to acoustic radiation forces and are then fixed (crosslinked) in a UV-triggered reaction. For this, the particles are loaded with a photoinitiator by solvent-induced swelling. This localizes the reaction and allows the bulk suspension to be reused. The final fabricated parts are mechanically stable and self-supporting.

pf

link (url) DOI Project Page [BibTex]


The grand challenges of Science Robotics
The grand challenges of Science Robotics

Yang, G., Bellingham, J., Dupont, P., Fischer, P., Floridi, L., Full, R., Jacobstein, N., Kumar, V., McNutt, M., Merrifield, R., Nelson, B., Scassellati, B., Taddeo, M., Taylor, R., Veloso, M., Wang, Z. L., Wood, R.

Science Robotics, 3(eaar7650), January 2018 (article)

Abstract
One of the ambitions of Science Robotics is to deeply root robotics research in science while developing novel robotic platforms that will enable new scientific discoveries. Of our 10 grand challenges, the first 7 represent underpinning technologies that have a wider impact on all application areas of robotics. For the next two challenges, we have included social robotics and medical robotics as application-specific areas of development to highlight the substantial societal and health impacts that they will bring. Finally, the last challenge is related to responsible innovation and how ethics and security should be carefully considered as we develop the technology further.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Over-Representation of Extreme Events in Decision Making Reflects Rational Use of Cognitive Resources

Lieder, F., Griffiths, T. L., Hsu, M.

Psychological Review, 125(1):1-32, January 2018 (article)

Abstract
People’s decisions and judgments are disproportionately swayed by improbable but extreme eventualities, such as terrorism, that come to mind easily. This article explores whether such availability biases can be reconciled with rational information processing by taking into account the fact that decision-makers value their time and have limited cognitive resources. Our analysis suggests that to make optimal use of their finite time decision-makers should over-represent the most important potential consequences relative to less important, put potentially more probable, outcomes. To evaluate this account we derive and test a model we call utility-weighted sampling. Utility-weighted sampling estimates the expected utility of potential actions by simulating their outcomes. Critically, outcomes with more extreme utilities have a higher probability of being simulated. We demonstrate that this model can explain not only people’s availability bias in judging the frequency of extreme events but also a wide range of cognitive biases in decisions from experience, decisions from description, and memory recall.

re

DOI [BibTex]

DOI [BibTex]


no image
On Time Optimization of Centroidal Momentum Dynamics

Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 5776-5782, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing † †Implementation details and demos can be found in the source code available at https://git-amd.tuebingen.mpg.de/bponton/timeoptimization.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Beyond Bounded Rationality: Reverse-Engineering and Enhancing Human Intelligence

(Glushko Prize 2020)

Lieder, F.

University of California, Berkeley, 2018 (phdthesis)

Abstract
Bad decisions can have devastating consequences: There is a vast body of literature claiming that human judgment and decision-making are riddled with numerous systematic violations of the rules of logic, probability theory, and expected utility theory. The discovery of these cognitive biases in the 1970s (Tversky & Kahneman, 1974) made people question the concept of Homo sapiens as the rational animal, profoundly shaking the foundations of economics and rational models in the cognitive, neural, and social sciences. Four decades later, these disciplines still lack a rigorous theoretical foundation for explaining and remedying people’s cognitive biases. To solve this problem, my dissertation offers a mathematically precise theory of bounded rationality and demonstrates how it can be leveraged to elucidate the cognitive mechanisms of judgment and decision-making (Part 1) and to help people make better decisions (Part 2).

re

Précis of Beyond Bounded Rationality: Reverse-Engineering and Enhancing Human Intelligence DOI [BibTex]


no image
The Computational Challenges of Pursuing Multiple Goals: Network Structure of Goal Systems Predicts Human Performance

Reichman, D., Lieder, F., Bourgin, D. D., Talmon, N., Griffiths, T. L.

PsyArXiv, 2018 (article)

Abstract
Extant psychological theories attribute people’s failure to achieve their goals primarily to failures of self-control, insufficient motivation, or lacking skills. We develop a complementary theory specifying conditions under which the computational complexity of making the right decisions becomes prohibitive of goal achievement regardless of skill or motivation. We support our theory by predicting human performance from factors determining the computational complexity of selecting the optimal set of means for goal achievement. Following previous theories of goal pursuit, we express the relationship between goals and means as a bipartite graph where edges between means and goals indicate which means can be used to achieve which goals. This allows us to map two computational challenges that arise in goal achievement onto two classic combinatorial optimization problems: Set Cover and Maximum Coverage. While these problems are believed to be computationally intractable on general networks, their solution can be nevertheless efficiently approximated when the structure of the network resembles a tree. Thus, our initial prediction was that people should perform better with goal systems that are more tree-like. In addition, our theory predicted that people’s performance at selecting means should be a U-shaped function of the average number of goals each means is relevant to and the average number of means through which each goal could be accomplished. Here we report on six behavioral experiments which confirmed these predictions. Our results suggest that combinatorial parameters that are instrumental to algorithm design can also be useful for understanding when and why people struggle to pursue their goals effectively.

re

DOI [BibTex]

DOI [BibTex]


no image
Geckos Race across Water using Multiple Mechanisms

Nirody, J., Jinn, J., Libby, T., Lee, T., Jusufi, A., Hu, D., Full, R.

Current Biology, 2018 (article)

bio

[BibTex]

[BibTex]


no image
Nanorobots propel through the eye

Wu, Z., Troll, J., Jeong, H., Qiang, W., Stang, M., Ziemssen, F., Wang, Z., Dong, M., Schnichels, S., Qiu, T., Fischer, P.

Max Planck Society, 2018 (mpi_year_book)

Abstract
Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart developed specially coated nanometer-sized robots that could be moved actively through dense tissue like the vitreous of the eye. So far, the transport of such nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. Our work constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

pf

link (url) [BibTex]

link (url) [BibTex]


no image
Learning a Structured Neural Network Policy for a Hopping Task.

Viereck, J., Kozolinsky, J., Herzog, A., Righetti, L.

IEEE Robotics and Automation Letters, 3(4):4092-4099, October 2018 (article)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
The Impact of Robotics and Automation on Working Conditions and Employment [Ethical, Legal, and Societal Issues]

Pham, Q., Madhavan, R., Righetti, L., Smart, W., Chatila, R.

IEEE Robotics and Automation Magazine, 25(2):126-128, June 2018 (article)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Unsupervised Contact Learning for Humanoid Estimation and Control

Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive sensors - endeffector contact wrench sensors and inertial measurement units (IMUs) - and the method is completely unsupervised. The resulting cluster means are used to efficiently compute the probability of contact in each of the six endeffector degrees of freedom (DoFs) independently. This clustering-based contact probability estimator is validated in a kinematics-based base state estimator in a simulation environment with realistic added sensor noise for locomotion over rough, low-friction terrain on which the robot is subject to foot slip and rotation. The proposed base state estimator which utilizes these six DoF contact probability estimates is shown to perform considerably better than that which determines kinematic contact constraints purely based on measured normal force.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task-Specific Dynamics to Improve Whole-Body Control

Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.

In Hua, IEEE, Beijing, China, November 2018 (inproceedings)

Abstract
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, high feedback terms can be used to improve tracking accuracy; however, this can lead to very stiff behavior or poor tracking accuracy due to limited control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
An MPC Walking Framework With External Contact Forces

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
In this work, we present an extension to a linear Model Predictive Control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To this end, we set up a two-step optimization problem. In the first optimization, we compute the Center of Mass (CoM) trajectory, foot step locations, and introduce slack variables to account for violating the imposed constraints on the Zero Moment Point (ZMP). We then use the slack variables to trigger the second optimization, in which we calculate the optimal external force that compensates for the ZMP tracking error. This optimization considers multiple contacts positions within the environment by formulating the problem as a Mixed Integer Quadratic Program (MIQP) that can be solved at a speed between 100-300 Hz. Once contact is created, the MIQP reduces to a single Quadratic Program (QP) that can be solved in real-time ({\textless}; 1kHz). Simulations show that the presented walking control scheme can withstand disturbances 2-3× larger with the additional force provided by a hand contact.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Lethal Autonomous Weapon Systems [Ethical, Legal, and Societal Issues]

Righetti, L., Pham, Q., Madhavan, R., Chatila, R.

IEEE Robotics \& Automation Magazine, 25(1):123-126, March 2018 (article)

Abstract
The topic of lethal autonomous weapon systems has recently caught public attention due to extensive news coverage and apocalyptic declarations from famous scientists and technologists. Weapon systems with increasing autonomy are being developed due to fast improvements in machine learning, robotics, and automation in general. These developments raise important and complex security, legal, ethical, societal, and technological issues that are being extensively discussed by scholars, nongovernmental organizations (NGOs), militaries, governments, and the international community. Unfortunately, the robotics community has stayed out of the debate, for the most part, despite being the main provider of autonomous technologies. In this column, we review the main issues raised by the increase of autonomy in weapon systems and the state of the international discussion. We argue that the robotics community has a fundamental role to play in these discussions, for its own sake, to provide the often-missing technical expertise necessary to frame the debate and promote technological development in line with the IEEE Robotics and Automation Society (RAS) objective of advancing technology to benefit humanity.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2015


Enzymatically active biomimetic micropropellers for the penetration of mucin gels
Enzymatically active biomimetic micropropellers for the penetration of mucin gels

Walker (Schamel), D., Käsdorf, B. T., Jeong, H. H., Lieleg, O., Fischer, P.

Science Advances, 1(11):e1500501, December 2015 (article)

Abstract
In the body, mucus provides an important defense mechanism by limiting the penetration of pathogens. It is therefore also a major obstacle for the efficient delivery of particle-based drug carriers. The acidic stomach lining in particular is difficult to overcome because mucin glycoproteins form viscoelastic gels under acidic conditions. The bacterium Helicobacter pylori has developed a strategy to overcome the mucus barrier by producing the enzyme urease, which locally raises the pH and consequently liquefies the mucus. This allows the bacteria to swim through mucus and to reach the epithelial surface. We present an artificial system of reactive magnetic micropropellers that mimic this strategy to move through gastric mucin gels by making use of surface-immobilized urease. The results demonstrate the validity of this biomimetic approach to penetrate biological gels, and show that externally propelled microstructures can actively and reversibly manipulate the physical state of their surroundings, suggesting that such particles could potentially penetrate native mucus.

pf

link (url) DOI [BibTex]

2015


link (url) DOI [BibTex]


The EChemPen: A Guiding Hand To Learn Electrochemical Surface Modifications
The EChemPen: A Guiding Hand To Learn Electrochemical Surface Modifications

Valetaud, M., Loget, G., Roche, J., Hueken, N., Fattah, Z., Badets, V., Fontaine, O., Zigah, D.

J. of Chem. Ed., 92(10):1700-1704, September 2015 (article)

Abstract
The Electrochemical Pen (EChemPen) was developed as an attractive tool for learning electrochemistry. The fabrication, principle, and operation of the EChemPen are simple and can be easily performed by students in practical classes. It is based on a regular fountain pen principle, where the electrolytic solution is dispensed at a tip to locally modify a conductive surface by triggering a localized electrochemical reaction. Three simple model reactions were chosen to demonstrate the versatility of the EChemPen for teaching various electrochemical processes. We describe first the reversible writing/erasing of metal letters, then the electrodeposition of a black conducting polymer "ink", and finally the colorful writings that can be generated by titanium anodization and that can be controlled by the applied potential. These entertaining and didactic experiments are adapted for teaching undergraduate students that start to study electrochemistry by means of surface modification reactions.

pf

DOI [BibTex]

DOI [BibTex]


3D-printed Soft Microrobot for Swimming in Biological Fluids
3D-printed Soft Microrobot for Swimming in Biological Fluids

Qiu, T., Palagi, S., Fischer, P.

In Conf. Proc. IEEE Eng. Med. Biol. Soc., pages: 4922-4925, August 2015 (inproceedings)

Abstract
Microscopic artificial swimmers hold the potential to enable novel non-invasive medical procedures. In order to ease their translation towards real biomedical applications, simpler designs as well as cheaper yet more reliable materials and fabrication processes should be adopted, provided that the functionality of the microrobots can be kept. A simple single-hinge design could already enable microswimming in non-Newtonian fluids, which most bodily fluids are. Here, we address the fabrication of such single-hinge microrobots with a 3D-printed soft material. Firstly, a finite element model is developed to investigate the deformability of the 3D-printed microstructure under typical values of the actuating magnetic fields. Then the microstructures are fabricated by direct 3D-printing of a soft material and their swimming performances are evaluated. The speeds achieved with the 3D-printed microrobots are comparable to those obtained in previous work with complex fabrication procedures, thus showing great promise for 3D-printed microrobots to be operated in biological fluids.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Optimal Length of Low Reynolds Number Nanopropellers
Optimal Length of Low Reynolds Number Nanopropellers

Walker (Schamel), D., Kuebler, M., Morozov, K. I., Fischer, P., Leshansky, A. M.

Nano Letters, 15(7):4412-4416, June 2015 (article)

Abstract
Locomotion in fluids at the nanoscale is dominated by viscous drag. One efficient propulsion scheme is to use a weak rotating magnetic field that drives a chiral object. Froth bacterial flagella to artificial drills, the corkscrew is a universally useful chiral shape for propulsion in viscous environments. Externally powered magnetic micro- and nanomotors have been recently developed that allow for precise fuel-free propulsion in complex media. Here, we combine analytical and numerical theory with experiments on nanostructured screw-propellers to show that the optimal length is surprisingly short only about one helical turn, which is shorter than most of the structures in use to date. The results have important implications for the design of artificial actuated nano- and micropropellers and can dramatically reduce fabrication times, while ensuring optimal performance.

pf

DOI [BibTex]

DOI [BibTex]


A theoretical study of potentially observable chirality-sensitive NMR effects in molecules
A theoretical study of potentially observable chirality-sensitive NMR effects in molecules

Garbacz, P., Cukras, J., Jaszunski, M.

Phys. Chem. Chem. Phys., 17(35):22642-22651, May 2015 (article)

Abstract
Two recently predicted nuclear magnetic resonance effects, the chirality-induced rotating electric polarization and the oscillating magnetization, are examined for several experimentally available chiral molecules. We discuss in detail the requirements for experimental detection of chirality-sensitive NMR effects of the studied molecules. These requirements are related to two parameters: the shielding polarizability and the antisymmetric part of the nuclear magnetic shielding tensor. The dominant second contribution has been computed for small molecules at the coupled cluster and density functional theory levels. It was found that DFT calculations using the KT2 functional and the aug-cc-pCVTZ basis set adequately reproduce the CCSD(T) values obtained with the same basis set. The largest values of parameters, thus most promising from the experimental point of view, were obtained for the fluorine nuclei in 1,3-difluorocyclopropene and 1,3-diphenyl-2-fluoro-3-trifluoromethylcyclopropene.

pf

DOI [BibTex]

DOI [BibTex]


Dynamic Inclusion Complexes of Metal Nanoparticles Inside Nanocups
Dynamic Inclusion Complexes of Metal Nanoparticles Inside Nanocups

Alarcon-Correa, M., Lee, T. C., Fischer, P.

Angew. Chem. Int. Ed., 54(23):6730-6734, May 2015, Featured cover article. (article)

Abstract
Host-guest inclusion complexes are abundant in molecular systems and of fundamental importance in living organisms. Realizing a colloidal analogue of a molecular dynamic inclusion complex is challenging because inorganic nanoparticles (NPs) with a well-defined cavity and portal are difficult to synthesize in high yield and with good structural fidelity. Herein, a generic strategy towards the fabrication of dynamic 1: 1 inclusion complexes of metal nanoparticles inside oxide nanocups with high yield (> 70%) and regiospecificity (> 90%) by means of a reactive double Janus nanoparticle intermediate is reported. Experimental evidence confirms that the inclusion complexes are formed by a kinetically controlled mechanism involving a delicate interplay between bipolar galvanic corrosion and alloying-dealloying oxidation. Release of the NP guest from the nanocups can be efficiently triggered by an external stimulus. Featured cover article.

pf

DOI [BibTex]

DOI [BibTex]


Surface roughness-induced speed increase for active Janus micromotors
Surface roughness-induced speed increase for active Janus micromotors

Choudhury, U., Soler, L., Gibbs, J. G., Sanchez, S., Fischer, P.

Chem. Comm., 51(41):8660-8663, April 2015 (article)

Abstract
We demonstrate a simple physical fabrication method to control surface roughness of Janus micromotors and fabricate self-propelled active Janus microparticles with rough catalytic platinum surfaces that show a four-fold increase in their propulsion speed compared to conventional Janus particles coated with a smooth Pt layer.

pf

DOI [BibTex]

DOI [BibTex]


Active colloidal microdrills
Active colloidal microdrills

Gibbs, J. G., Fischer, P.

Chem. Comm., 51(20):4192-4195, Febuary 2015 (article)

Abstract
We demonstrate a chemically driven, autonomous catalytic microdrill. An asymmetric distribution of catalyst causes the helical swimmer to twist while it undergoes directed propulsion. A driving torque and hydrodynamic coupling between translation and rotation at low Reynolds number leads to drill-like swimming behaviour.

pf

DOI [BibTex]

DOI [BibTex]


no image
When to use which heuristic: A rational solution to the strategy selection problem

Lieder, F., Griffiths, T. L.

In Proceedings of the 37th Annual Conference of the Cognitive Science Society, 2015 (inproceedings)

Abstract
The human mind appears to be equipped with a toolbox full of cognitive strategies, but how do people decide when to use which strategy? We leverage rational metareasoning to derive a rational solution to this problem and apply it to decision making under uncertainty. The resulting theory reconciles the two poles of the debate about human rationality by proposing that people gradually learn to make rational use of fallible heuristics. We evaluate this theory against empirical data and existing accounts of strategy selection (i.e. SSL and RELACS). Our results suggest that while SSL and RELACS can explain people's ability to adapt to homogeneous environments in which all decision problems are of the same type, rational metareasoning can additionally explain people's ability to adapt to heterogeneous environments and flexibly switch strategies from one decision to the next.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Selectable Nanopattern Arrays for Nanolithographic Imprint and Etch-Mask Applications
Selectable Nanopattern Arrays for Nanolithographic Imprint and Etch-Mask Applications

Jeong, H. H., Mark, A. G., Lee, T., Son, K., Chen, W., Alarcon-Correa, M., Kim, I., Schütz, G., Fischer, P.

Adv. Science, 2(7):1500016, 2015, Featured cover article. (article)

Abstract
A parallel nanolithographic patterning method is presented that can be used to obtain arrays of multifunctional nanoparticles. These patterns can simply be converted into a variety of secondary nanopatterns that are useful for nanolithographic imprint, plasmonic, and etch-mask applications.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Children and Adults Differ in their Strategies for Social Learning

Lieder, F., Sim, Z. L., Hu, J. C., Griffiths, T. L., Xu, F.

In Proceedings of the 37th Annual Conference of the Cognitive Science Society, 2015 (inproceedings)

Abstract
Adults and children rely heavily on other people’s testimony. However, domains of knowledge where there is no consensus on the truth are likely to result in conflicting testimonies. Previous research has demonstrated that in these cases, learners look towards the majority opinion to make decisions. However, it remains unclear how learners evaluate social information, given that considering either the overall valence, or the number of testimonies, or both may lead to different conclusions. We therefore formalized several social learning strategies and compared them to the performance of adults and children. We find that children use different strategies than adults. This suggests that the development of social learning may involve the acquisition of cognitive strategies.

re

link (url) [BibTex]

link (url) [BibTex]