Header logo is


2014


Thumb xl cover acs ancac3 v008i009
Nanopropellers and Their Actuation in Complex Viscoelastic Media

Schamel, D., Mark, A. G., Gibbs, J. G., Miksch, C., Morozov, K. I., Leshansky, A. M., Fischer, P.

ACS Nano, 8(9):8794-8801, June 2014, Featured cover article. (article)

Abstract
Tissue and biological fluids are complex viscoelastic media with a nanoporous macromolecular structure. Here, we demonstrate that helical nanopropellers can be controllably steered through such a biological gel. The screw-propellers have a filament diameter of about 70 nm and are smaller than previously reported nanopropellers as well as any swimming microorganism. We show that the nanoscrews will move through high-viscosity solutions with comparable velocities to that of larger micropropellers, even though they are so small that Brownian forces suppress their actuation in pure water. When actuated in viscoelastic hyaluronan gels, the nanopropellers appear to have a significant advantage, as they are of the same size range as the gel’s mesh size. Whereas larger helices will show very low or negligible propulsion in hyaluronan solutions, the nanoscrews actually display significantly enhanced propulsion velocities that exceed the highest measured speeds in Newtonian fluids. The nanopropellers are not only promising for applications in the extracellular environment but small enough to be taken up by cells.

Featured cover article.

pf

Video - Helical Micro and Nanopropellers for Applications in Biological Fluidic Environments link (url) DOI [BibTex]


Thumb xl pami
3D Traffic Scene Understanding from Movable Platforms

Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(5):1012-1025, published, IEEE, Los Alamitos, CA, May 2014 (article)

Abstract
In this paper, we present a novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene. In particular, the scene topology, geometry and traffic activities are inferred from short video sequences. Inspired by the impressive driving capabilities of humans, our model does not rely on GPS, lidar or map knowledge. Instead, it takes advantage of a diverse set of visual cues in the form of vehicle tracklets, vanishing points, semantic scene labels, scene flow and occupancy grids. For each of these cues we propose likelihood functions that are integrated into a probabilistic generative model. We learn all model parameters from training data using contrastive divergence. Experiments conducted on videos of 113 representative intersections show that our approach successfully infers the correct layout in a variety of very challenging scenarios. To evaluate the importance of each feature cue, experiments using different feature combinations are conducted. Furthermore, we show how by employing context derived from the proposed method we are able to improve over the state-of-the-art in terms of object detection and object orientation estimation in challenging and cluttered urban environments.

avg ps

pdf link (url) [BibTex]

pdf link (url) [BibTex]


Thumb xl toc image
Circular polarization interferometry: circularly polarized modes of cholesteric liquid crystals

Sanchez-Castillo, A., Eslami, S., Giesselmann, F., Fischer, P.

OPTICS EXPRESS, 22(25):31227-31236, 2014 (article)

Abstract
We describe a novel polarization interferometer which permits the determination of the refractive indices for circularly-polarized light. It is based on a Jamin-Lebedeff interferometer, modified with waveplates, and permits us to experimentally determine the refractive indices n(L) and n(R) of the respectively left- and right-circularly polarized modes in a cholesteric liquid crystal. Whereas optical rotation measurements only determine the circular birefringence, i.e. the difference (n(L) - n(R)), the interferometer also permits the determination of their absolute values. We report refractive indices of a cholesteric liquid crystal in the region of selective (Bragg) reflection as a function of temperature. (C) 2014 Optical Society of America

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Self-Propelling Nanomotors in the Presence of Strong Brownian Forces

Lee, T., Alarcon-Correa, M., Miksch, C., Hahn, K., Gibbs, J. G., Fischer, P.

NANO LETTERS, 14(5):2407-2412, 2014 (article)

Abstract
Motility in living systems is due to an array of complex molecular nanomotors that are essential for the function and survival of cells. These protein nanomotors operate not only despite of but also because of stochastic forces. Artificial means of realizing motility rely on local concentration or temperature gradients that are established across a particle, resulting in slip velocities at the particle surface and thus motion of the particle relative to the fluid. However, it remains unclear if these artificial motors can function at the smallest of scales, where Brownian motion dominates and no actively propelled living organisms can be found. Recently, the first reports have appeared suggesting that the swimming mechanisms of artificial structures may also apply to enzymes that are catalytically active. Here we report a scheme to realize artificial Janus nanoparticles (JNPs) with an overall size that is comparable to that of some enzymes similar to 30 nm. Our JNPs can catalyze the decomposition of hydrogen peroxide to water and oxygen and thus actively move by self-electrophoresis. Geometric anisotropy of the Pt-Au Janus nanoparticles permits the simultaneous observation of their translational and rotational motion by dynamic light scattering. While their dynamics is strongly influenced by Brownian rotation, the artificial Janus nanomotors show bursts of linear ballistic motion resulting in enhanced diffusion.

pf

DOI [BibTex]


Thumb xl toc image
Shape control in wafer-based aperiodic 3D nanostructures

Hyeon-Ho, J., Mark, A. G., Gibbs, J. G., Reindl, T., Waizmann, U., Weis, J., Fischer, P.

NANOTECHNOLOGY, 25(23), 2014, Cover article. (article)

Abstract
Controlled local fabrication of three-dimensional (3D) nanostructures is important to explore and enhance the function of single nanodevices, but is experimentally challenging. We present a scheme based on e-beam lithography (EBL) written seeds, and glancing angle deposition (GLAD) grown structures to create nanoscale objects with defined shapes but in aperiodic arrangements. By using a continuous sacrificial corral surrounding the features of interest we grow isolated 3D nanostructures that have complex cross-sections and sidewall morphology that are surrounded by zones of clean substrate.

Cover article.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl pictire scallop
Swimming by reciprocal motion at low Reynolds number

Qiu, T., Lee, T., Mark, A. G., Morozov, K. I., Muenster, R., Mierka, O., Turek, S., Leshansky, A. M., Fischer, P.

NATURE COMMUNICATIONS, 5, 2014, Max Planck Press Release. (article)

Abstract
Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell's scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric `micro-scallop', a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids.

Max Planck Press Release.

pf

Video - A Swimming Micro-Scallop Video - Winner of the Micro-robotic Design Challenge in Hamlyn Symposium on Medical Robotics DOI [BibTex]

Video - A Swimming Micro-Scallop Video - Winner of the Micro-robotic Design Challenge in Hamlyn Symposium on Medical Robotics DOI [BibTex]


Thumb xl toc image
Nanohelices by shadow growth

Gibbs, J. G., Mark, A. G., Lee, T., Eslami, S., Schamel, D., Fischer, P.

NANOSCALE, 6(16):9457-9466, 2014 (article)

Abstract
The helix has remarkable qualities and is prevalent in many fields including mathematics, physics, chemistry, and biology. This shape, which is chiral by nature, is ubiquitous in biology with perhaps the most famous example being DNA. Other naturally occurring helices are common at the nanoscale in the form of protein secondary structures and in various macromolecules. Nanoscale helices exhibit a wide range of interesting mechanical, optical, and electrical properties which can be intentionally engineered into the structure by choosing the correct morphology and material. As technology advances, these fabrication parameters can be fine-tuned and matched to the application of interest. Herein, we focus on the fabrication and properties of nanohelices grown by a dynamic shadowing growth method combined with fast wafer-scale substrate patterning which has a number of distinct advantages. We review the fabrication methodology and provide several examples that illustrate the generality and utility of nanohelices shadow-grown on nanopatterns.

pf

Video - Fabrication of Designer Nanostructures DOI [BibTex]


Thumb xl toc image
Chiral Nanomagnets

Eslami, S., Gibbs, J. G., Rechkemmer, Y., van Slageren, J., Alarcon-Correa, M., Lee, T., Mark, A. G., Rikken, G. L. J. A., Fischer, P.

ACS PHOTONICS, 1(11):1231-1236, 2014 (article)

Abstract
We report on the enhanced optical properties of chiral magnetic nanohelices with critical dimensions comparable to the ferromagnetic domain size. They are shown to be ferromagnetic at room temperature, have defined chirality, and exhibit large optical activity in the visible as verified by electron microscopy, superconducting quantum interference device (SQUID) magnetometry, natural circular dichroism (NCD), and magnetic circular dichroism (MCD) measurements. The structures exhibit magneto-chiral dichroism (MChD), which directly demonstrates coupling between their structural chirality and magnetism. A chiral nickel (Ni) film consisting of an array of nanohelices similar to 100 nm in length exhibits an MChD anisotropy factor g(MChD) approximate to 10(-4) T-1 at room temperature in a saturation field of similar to 0.2 T, permitting polarization-independent control of the film's absorption properties through magnetic field modulation. This is also the first report of MChD in a material with structural chirality on the order of the wavelength of light, and therefore the Ni nanohelix array is a metamaterial with magnetochiral properties that can be tailored through a dynamic deposition process.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Wireless powering of e-swimmers

Roche, J., Carrara, S., Sanchez, J., Lannelongue, J., Loget, G., Bouffier, L., Fischer, P., Kuhn, A.

SCIENTIFIC REPORTS, 4, 2014 (article)

Abstract
Miniaturized structures that can move in a controlled way in solution and integrate various functionalities are attracting considerable attention due to the potential applications in fields ranging from autonomous micromotors to roving sensors. Here we introduce a concept which allows, depending on their specific design, the controlled directional motion of objects in water, combined with electronic functionalities such as the emission of light, sensing, signal conversion, treatment and transmission. The approach is based on electric field-induced polarization, which triggers different chemical reactions at the surface of the object and thereby its propulsion. This results in a localized electric current that can power in a wireless way electronic devices in water, leading to a new class of electronic swimmers (e-swimmers).

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Swelling and shrinking behaviour of photoresponsive phosphonium-based ionogel microstructures

Czugala, M., O’Connell, C., Blin, C., Fischer, P., Fraser, K. J., Benito-Lopez, F., Diamond, D.

SENSORS AND ACTUATORS B-CHEMICAL, 194, pages: 105-113, 2014 (article)

Abstract
Photoresponsive N-isopropylacrylamide ionogel microstructures are presented in this study. These ionogels are synthesised using phosphonium based room temperature ionic liquids, together with the photochromic compound benzospiropyran. The microstructures can be actuated using light irradiation, facilitating non-contact and non-invasive operation. For the first time, the characterisation of the swelling and shrinking behaviour of several photopatterned ionogel microstructures is presented and the influence of surface-area-to-volume ratio on the swelling kinetics is evaluated. It was found that the swelling and shrinking behaviour of the ionogels is strongly dependent on the nature of the ionic liquid. In particular, the {[}P-6,P-6,P-6,P-14]{[}NTf2] ionogel exhibits the greatest degree of swelling, reaching up to 180\% of its initial size, and the fastest shrinkage rate (k(sh) = 29 +/- 4 x 10(-2) s(-1)). (C) 2014 Elsevier B. V. All rights reserved.

pf

DOI [BibTex]

DOI [BibTex]