Header logo is


2015


3D-printed Soft Microrobot for Swimming in Biological Fluids
3D-printed Soft Microrobot for Swimming in Biological Fluids

Qiu, T., Palagi, S., Fischer, P.

In Conf. Proc. IEEE Eng. Med. Biol. Soc., pages: 4922-4925, August 2015 (inproceedings)

Abstract
Microscopic artificial swimmers hold the potential to enable novel non-invasive medical procedures. In order to ease their translation towards real biomedical applications, simpler designs as well as cheaper yet more reliable materials and fabrication processes should be adopted, provided that the functionality of the microrobots can be kept. A simple single-hinge design could already enable microswimming in non-Newtonian fluids, which most bodily fluids are. Here, we address the fabrication of such single-hinge microrobots with a 3D-printed soft material. Firstly, a finite element model is developed to investigate the deformability of the 3D-printed microstructure under typical values of the actuating magnetic fields. Then the microstructures are fabricated by direct 3D-printing of a soft material and their swimming performances are evaluated. The speeds achieved with the 3D-printed microrobots are comparable to those obtained in previous work with complex fabrication procedures, thus showing great promise for 3D-printed microrobots to be operated in biological fluids.

pf

link (url) DOI [BibTex]

2015


link (url) DOI [BibTex]


Comparing the effect of different spine and leg designs for a small bounding quadruped robot
Comparing the effect of different spine and leg designs for a small bounding quadruped robot

Eckert, P., Spröwitz, A., Witte, H., Ijspeert, A. J.

In Proceedings of ICRA, pages: 3128-3133, Seattle, Washington, USA, 2015 (inproceedings)

Abstract
We present Lynx-robot, a quadruped, modular, compliant machine. It alternately features a directly actuated, single-joint spine design, or an actively supported, passive compliant, multi-joint spine configuration. Both spine con- figurations bend in the sagittal plane. This study aims at characterizing these two, largely different spine concepts, for a bounding gait of a robot with a three segmented, pantograph leg design. An earlier, similar-sized, bounding, quadruped robot named Bobcat with a two-segment leg design and a directly actuated, single-joint spine design serves as a comparison robot, to study and compare the effect of the leg design on speed, while keeping the spine design fixed. Both proposed spine designs (single rotatory and active and multi-joint compliant) reach moderate, self-stable speeds.

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]

2004


Simple and low-cost compliant leg-foot system
Simple and low-cost compliant leg-foot system

Meyer, F., Spröwitz, A., Lungarella, M., Berthouze, L.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), 1, pages: 515-520, IEEE, Sendai, Japan, 2004 (inproceedings)

Abstract
We present the design of a simple and low- cost humanoid leg-foot system featuring compliant joints and springy feet. The mechanical compliance of the individual joints can be adjusted by means of visco-elastic material, or metal. To explore some of the relevant characteristics of the proposed system, we performed a series of experiments in which the leg was dropped from a fixed height. Combinations of different materials in the joints (silicone rubber, latex, and brass) as well as a rigid or a compliant foot were used. Additional data were obtained through of a Lagrangian analysis of the leg-foot system. Our analyses show that compliant joints not only reduce impactive forces, but also induce smoother joint trajectories. Further, by employing a compliant foot, a higher energy efficiency for the movement is achieved.

dlg

DOI [BibTex]

2004


DOI [BibTex]