Header logo is


2019


no image
Deep Neural Network Approach in Electrical Impedance Tomography-Based Real-Time Soft Tactile Sensor

Park, H., Lee, H., Park, K., Mo, S., Kim, J.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 7447-7452, Macau, China, November 2019 (inproceedings)

Abstract
Recently, a whole-body tactile sensing have emerged in robotics for safe human-robot interaction. A key issue in the whole-body tactile sensing is ensuring large-area manufacturability and high durability. To fulfill these requirements, a reconstruction method called electrical impedance tomography (EIT) was adopted in large-area tactile sensing. This method maps voltage measurements to conductivity distribution using only a few number of measurement electrodes. A common approach for the mapping is using a linearized model derived from the Maxwell's equation. This linearized model shows fast computation time and moderate robustness against measurement noise but reconstruction accuracy is limited. In this paper, we propose a novel nonlinear EIT algorithm through Deep Neural Network (DNN) approach to improve the reconstruction accuracy of EIT-based tactile sensors. The neural network architecture with rectified linear unit (ReLU) function ensured extremely low computational time (0.002 seconds) and nonlinear network structure which provides superior measurement accuracy. The DNN model was trained with dataset synthesized in simulation environment. To achieve the robustness against measurement noise, the training proceeded with additive Gaussian noise that estimated through actual measurement noise. For real sensor application, the trained DNN model was transferred to a conductive fabric-based soft tactile sensor. For validation, the reconstruction error and noise robustness were mainly compared using conventional linearized model and proposed approach in simulation environment. As a demonstration, the tactile sensor equipped with the trained DNN model is presented for a contact force estimation.

hi

DOI [BibTex]

2019


DOI [BibTex]


no image
Interactive Augmented Reality for Robot-Assisted Surgery

Forte, M. P., Kuchenbecker, K. J.

Workshop extended abstract presented as a podium presentation at the IROS Workshop on Legacy Disruptors in Applied Telerobotics, Macau, November 2019 (misc) Accepted

hi

Project Page [BibTex]

Project Page [BibTex]


EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association
EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

Strecke, M., Stückler, J.

In International Conference on Computer Vision, October 2019, arXiv:1904.11781 (inproceedings)

ev

preprint Project page Poster DOI [BibTex]

preprint Project page Poster DOI [BibTex]


Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels
Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels

Choi, E., Jeong, H., Qiu, T., Fischer, P., Palagi, S.

4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)

Abstract
Remotely controlled, automated actuation and manipulation at the microscale is essential for a number of micro-manufacturing, biology, and lab-on-a-chip applications. To transport and manipulate micro-objects, arrays of remotely controlled micro-actuators are required, which, in turn, typically require complex and expensive solid-state chips. Here, we show that a continuous surface can function as a highly parallel, many-degree of freedom, wirelessly-controlled microactuator with seamless deformation. The soft continuous surface is based on a hydrogel that undergoes a volume change in response to applied light. The fabrication of the hydrogels and the characterization of their optical and thermomechanical behaviors are reported. The temperature-dependent localized deformation of the hydrogel is also investigated by numerical simulations. Static and dynamic deformations are obtained in the soft material by projecting light fields at high spatial resolution onto the surface. By controlling such deformations in open loop and especially closed loop, automated photoactuation is achieved. The surface deformations are then exploited to examine how inert microbeads can be manipulated autonomously on the surface. We believe that the proposed approach suggests ways to implement universal 2D micromanipulation schemes that can be useful for automation in microfabrication and lab-on-a-chip applications.

pf

[BibTex]

[BibTex]


Soft Phantom for the Training of Renal Calculi Diagnostics and  Lithotripsy
Soft Phantom for the Training of Renal Calculi Diagnostics and Lithotripsy

Li., D., Suarez-Ibarrola, R., Choi, E., Jeong, M., Gratzke, C., Miernik, A., Fischer, P., Qiu, T.

41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), July 2019 (conference)

Abstract
Organ models are important for medical training and surgical planning. With the fast development of additive fabrication technologies, including 3D printing, the fabrication of 3D organ phantoms with precise anatomical features becomes possible. Here, we develop the first high-resolution kidney phantom based on soft material assembly, by combining 3D printing and polymer molding techniques. The phantom exhibits both the detailed anatomy of a human kidney and the elasticity of soft tissues. The phantom assembly can be separated into two parts on the coronal plane, thus large renal calculi are readily placed at any desired location of the calyx. With our sealing method, the assembled phantom withstands a hydraulic pressure that is four times the normal intrarenal pressure, thus it allows the simulation of medical procedures under realistic pressure conditions. The medical diagnostics of the renal calculi is performed by multiple imaging modalities, including X-ray, ultrasound imaging and endoscopy. The endoscopic lithotripsy is also successfully performed on the phantom. The use of a multifunctional soft phantom assembly thus shows great promise for the simulation of minimally invasive medical procedures under realistic conditions.

pf

[BibTex]

[BibTex]


A Magnetic Actuation System for the  Active Microrheology in Soft Biomaterials
A Magnetic Actuation System for the Active Microrheology in Soft Biomaterials

Jeong, M., Choi, E., Li., D., Palagi, S., Fischer, P., Qiu, T.

4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)

Abstract
Microrheology is a key technique to characterize soft materials at small scales. The microprobe is wirelessly actuated and therefore typically only low forces or torques can be applied, which limits the range of the applied strain. Here, we report a new magnetic actuation system for microrheology consisting of an array of rotating permanent magnets, which achieves a rotating magnetic field with a spatially homogeneous high field strength of ~100 mT in a working volume of ~20×20×20 mm3. Compared to a traditional electromagnetic coil system, the permanent magnet assembly is portable and does not require cooling, and it exerts a large magnetic torque on the microprobe that is an order of magnitude higher than previous setups. Experimental results demonstrate that the measurement range of the soft gels’ elasticity covers at least five orders of magnitude. With the large actuation torque, it is also possible to study the fracture mechanics of soft biomaterials at small scales.

pf

[BibTex]

[BibTex]


no image
High-Fidelity Multiphysics Finite Element Modeling of Finger-Surface Interactions with Tactile Feedback

Serhat, G., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
In this study, we develop a high-fidelity finite element (FE) analysis framework that enables multiphysics simulation of the human finger in contact with a surface that is providing tactile feedback. We aim to elucidate a variety of physical interactions that can occur at finger-surface interfaces, including contact, friction, vibration, and electrovibration. We also develop novel FE-based methods that will allow prediction of nonconventional features such as real finger-surface contact area and finger stickiness. We envision using the developed computational tools for efficient design and optimization of haptic devices by replacing expensive and lengthy experimental procedures with high-fidelity simulation.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Fingertip Friction Enhances Perception of Normal Force Changes

Gueorguiev, D., Lambert, J., Thonnard, J., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
Using a force-controlled robotic platform, we tested the human perception of positive and negative modulations in normal force during passive dynamic touch, which also induced a strong related change in the finger-surface lateral force. In a two-alternative forced-choice task, eleven participants had to detect brief variations in the normal force compared to a constant controlled pre-stimulation force of 1 N and report whether it had increased or decreased. The average 75% just noticeable difference (JND) was found to be around 0.25 N for detecting the peak change and 0.30 N for correctly reporting the increase or the decrease. Interestingly, the friction coefficient of a subject’s fingertip positively correlated with his or her performance at detecting the change and reporting its direction, which suggests that humans may use the lateral force as a sensory cue to perceive variations in the normal force.

hi

[BibTex]

[BibTex]


Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations
Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations

Park, G., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference, pages: 467-472, July 2019 (inproceedings)

Abstract
A typical approach to creating realistic vibrotactile feedback is reducing 3D vibrations recorded by an accelerometer to 1D signals that can be played back on a haptic actuator, but some of the information is often lost in this dimensional reduction process. This paper describes seven representative algorithms and proposes four metrics based on the spectral match, the temporal match, and the average value and the variability of them across 3D rotations. These four performance metrics were applied to four texture recordings, and the method utilizing the discrete fourier transform (DFT) was found to be the best regardless of the sensing axis. We also recruited 16 participants to assess the perceptual similarity achieved by each algorithm in real time. We found the four metrics correlated well with the subjectively rated similarities for the six dimensional reduction algorithms, with the exception of taking the 3D vector magnitude, which was perceived to be good despite its low spectral and temporal match metrics.

hi

DOI [BibTex]

DOI [BibTex]


Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces
Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces

Vardar, Y., Wallraven, C., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 395-400, Tokyo, Japan, July 2019 (inproceedings)

Abstract
Both vision and touch contribute to the perception of real surfaces. Although there have been many studies on the individual contributions of each sense, it is still unclear how each modality’s information is processed and integrated. To fill this gap, we investigated the similarity of visual and haptic perceptual spaces, as well as how well they each correlate with fingertip interaction metrics. Twenty participants interacted with ten different surfaces from the Penn Haptic Texture Toolkit by either looking at or touching them and judged their similarity in pairs. By analyzing the resulting similarity ratings using multi-dimensional scaling (MDS), we found that surfaces are similarly organized within the three-dimensional perceptual spaces of both modalities. Also, between-participant correlations were significantly higher in the haptic condition. In a separate experiment, we obtained the contact forces and accelerations acting on one finger interacting with each surface in a controlled way. We analyzed the collected fingertip interaction data in both the time and frequency domains. Our results suggest that the three perceptual dimensions for each modality can be represented by roughness/smoothness, hardness/softness, and friction, and that these dimensions can be estimated by surface vibration power, tap spectral centroid, and kinetic friction coefficient, respectively.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Inflatable Haptic Sensor for the Torso of a Hugging Robot
Inflatable Haptic Sensor for the Torso of a Hugging Robot

Block, A. E., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
During hugs, humans naturally provide and intuit subtle non-verbal cues that signify the strength and duration of an exchanged hug. Personal preferences for this close interaction may vary greatly between people; robots do not currently have the abilities to perceive or understand these preferences. This work-in-progress paper discusses designing, building, and testing a novel inflatable torso that can simultaneously soften a robot and act as a tactile sensor to enable more natural and responsive hugging. Using PVC vinyl, a microphone, and a barometric pressure sensor, we created a small test chamber to demonstrate a proof of concept for the full torso. While contacting the chamber in several ways common in hugs (pat, squeeze, scratch, and rub), we recorded data from the two sensors. The preliminary results suggest that the complementary haptic sensing channels allow us to detect coarse and fine contacts typically experienced during hugs, regardless of user hand placement.

hi

Project Page [BibTex]

Project Page [BibTex]


The Haptician and the Alphamonsters
The Haptician and the Alphamonsters

Forte, M. P., L’Orsa, R., Mohan, M., Nam, S., Kuchenbecker, K. J.

Student Innovation Challenge on Implementing Haptics in Virtual Reality Environment presented at the IEEE World Haptics Conference, Tokyo, Japan, July 2019, Maria Paola Forte, Rachael L'Orsa, Mayumi Mohan, and Saekwang Nam contributed equally to this publication (misc)

Abstract
Dysgraphia is a neurological disorder characterized by writing disabilities that affects between 7% and 15% of children. It presents itself in the form of unfinished letters, letter distortion, inconsistent letter size, letter collision, etc. Traditional therapeutic exercises require continuous assistance from teachers or occupational therapists. Autonomous partial or full haptic guidance can produce positive results, but children often become bored with the repetitive nature of such activities. Conversely, virtual rehabilitation with video games represents a new frontier for occupational therapy due to its highly motivational nature. Virtual reality (VR) adds an element of novelty and entertainment to therapy, thus motivating players to perform exercises more regularly. We propose leveraging the HTC VIVE Pro and the EXOS Wrist DK2 to create an immersive spellcasting “exergame” (exercise game) that helps motivate children with dysgraphia to improve writing fluency.

hi

Student Innovation Challenge – Virtual Reality [BibTex]

Student Innovation Challenge – Virtual Reality [BibTex]


Understanding the Pull-off Force of the Human Fingerpad
Understanding the Pull-off Force of the Human Fingerpad

Nam, S., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
To understand the adhesive force that occurs when a finger pulls off of a smooth surface, we built an apparatus to measure the fingerpad’s moisture, normal force, and real contact area over time during interactions with a glass plate. We recorded a total of 450 trials (45 interactions by each of ten human subjects), capturing a wide range of values across the aforementioned variables. The experimental results showed that the pull-off force increases with larger finger contact area and faster detachment rate. Additionally, moisture generally increases the contact area of the finger, but too much moisture can restrict the increase in the pull-off force.

hi

Project Page [BibTex]

Project Page [BibTex]


Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design
Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design

Seifi, H., Fazlollahi, F., Oppermann, M., Sastrillo, J. A., Ip, J., Agrawal, A., Park, G., Kuchenbecker, K. J., MacLean, K. E.

In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), Glasgow, Scotland, May 2019 (inproceedings)

Abstract
Creating haptic experiences often entails inventing, modifying, or selecting specialized hardware. However, experience designers are rarely engineers, and 30 years of haptic inventions are buried in a fragmented literature that describes devices mechanically rather than by potential purpose. We conceived of Haptipedia to unlock this trove of examples: Haptipedia presents a device corpus for exploration through metadata that matter to both device and experience designers. It is a taxonomy of device attributes that go beyond physical description to capture potential utility, applied to a growing database of 105 grounded force-feedback devices, and accessed through a public visualization that links utility to morphology. Haptipedia's design was driven by both systematic review of the haptic device literature and rich input from diverse haptic designers. We describe Haptipedia's reception (including hopes it will redefine device reporting standards) and our plans for its sustainability through community participation.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Internal Array Electrodes Improve the Spatial Resolution of Soft Tactile Sensors Based on Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5411-5417, Montreal, Canada, May 2019, Hyosang Lee and Kyungseo Park contributed equally to this publication (inproceedings)

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Explorations of Shape-Changing Haptic Interfaces for Blind and Sighted Pedestrian Navigation
Explorations of Shape-Changing Haptic Interfaces for Blind and Sighted Pedestrian Navigation

Spiers, A., Kuchenbecker, K. J.

pages: 6, Workshop paper (6 pages) presented at the CHI 2019 Workshop on Hacking Blind Navigation, May 2019 (misc) Accepted

Abstract
Since the 1960s, technologists have worked to develop systems that facilitate independent navigation by vision-impaired (VI) pedestrians. These devices vary in terms of conveyed information and feedback modality. Unfortunately, many such prototypes never progress beyond laboratory testing. Conversely, smartphone-based navigation systems for sighted pedestrians have grown in robustness and capabilities, to the point of now being ubiquitous. How can we leverage the success of sighted navigation technology, which is driven by a larger global market, as a way to progress VI navigation systems? We believe one possibility is to make common devices that benefit both VI and sighted individuals, by providing information in a way that does not distract either user from their tasks or environment. To this end we have developed physical interfaces that eschew visual, audio or vibratory feedback, instead relying on the natural human ability to perceive the shape of a handheld object.

hi

[BibTex]

[BibTex]


no image
A Clustering Approach to Categorizing 7 Degree-of-Freedom Arm Motions during Activities of Daily Living

Gloumakov, Y., Spiers, A. J., Dollar, A. M.

In Proceedings of the International Conference on Robotics and Automation (ICRA), pages: 7214-7220, Montreal, Canada, May 2019 (inproceedings)

Abstract
In this paper we present a novel method of categorizing naturalistic human arm motions during activities of daily living using clustering techniques. While many current approaches attempt to define all arm motions using heuristic interpretation, or a combination of several abstract motion primitives, our unsupervised approach generates a hierarchical description of natural human motion with well recognized groups. Reliable recommendation of a subset of motions for task achievement is beneficial to various fields, such as robotic and semi-autonomous prosthetic device applications. The proposed method makes use of well-known techniques such as dynamic time warping (DTW) to obtain a divergence measure between motion segments, DTW barycenter averaging (DBA) to get a motion average, and Ward's distance criterion to build the hierarchical tree. The clusters that emerge summarize the variety of recorded motions into the following general tasks: reach-to-front, transfer-box, drinking from vessel, on-table motion, turning a key or door knob, and reach-to-back pocket. The clustering methodology is justified by comparing against an alternative measure of divergence using Bezier coefficients and K-medoids clustering.

hi

DOI [BibTex]

DOI [BibTex]


Improving Haptic Adjective Recognition with Unsupervised Feature Learning
Improving Haptic Adjective Recognition with Unsupervised Feature Learning

Richardson, B. A., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 3804-3810, Montreal, Canada, May 2019 (inproceedings)

Abstract
Humans can form an impression of how a new object feels simply by touching its surfaces with the densely innervated skin of the fingertips. Many haptics researchers have recently been working to endow robots with similar levels of haptic intelligence, but these efforts almost always employ hand-crafted features, which are brittle, and concrete tasks, such as object recognition. We applied unsupervised feature learning methods, specifically K-SVD and Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP), to rich multi-modal haptic data from a diverse dataset. We then tested the learned features on 19 more abstract binary classification tasks that center on haptic adjectives such as smooth and squishy. The learned features proved superior to traditional hand-crafted features by a large margin, almost doubling the average F1 score across all adjectives. Additionally, particular exploratory procedures (EPs) and sensor channels were found to support perception of certain haptic adjectives, underlining the need for diverse interactions and multi-modal haptic data.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Bimanual Wrist-Squeezing Haptic Feedback Changes Speed-Force Tradeoff in Robotic Surgery Training

Cao, E., Machaca, S., Bernard, T., Wolfinger, B., Patterson, Z., Chi, A., Adrales, G. L., Kuchenbecker, K. J., Brown, J. D.

Extended abstract presented as an ePoster at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Baltimore, USA, April 2019 (misc) Accepted

hi

[BibTex]

[BibTex]


no image
Interactive Augmented Reality for Robot-Assisted Surgery

Forte, M. P., Kuchenbecker, K. J.

Extended abstract presented as an Emerging Technology ePoster at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Baltimore, Maryland, USA, April 2019 (misc) Accepted

hi

Project Page [BibTex]

Project Page [BibTex]


no image
A Design Tool for Therapeutic Social-Physical Human-Robot Interactions

Mohan, M., Kuchenbecker, K. J.

Workshop paper (3 pages) presented at the HRI Pioneers Workshop, Daegu, South Korea, March 2019 (misc)

Abstract
We live in an aging society; social-physical human-robot interaction has the potential to keep our elderly adults healthy by motivating them to exercise. After summarizing prior work, this paper proposes a tool that can be used to design exercise and therapy interactions to be performed by an upper-body humanoid robot. The interaction design tool comprises a teleoperation system that transmits the operator’s arm motions, head motions and facial expression along with an interface to monitor and assess the motion of the user interacting with the robot. We plan to use this platform to create dynamic and intuitive exercise interactions.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Toward Expert-Sourcing of a Haptic Device Repository
Toward Expert-Sourcing of a Haptic Device Repository

Seifi, H., Ip, J., Agrawal, A., Kuchenbecker, K. J., MacLean, K. E.

Glasgow, UK, 2019 (misc)

Abstract
Haptipedia is an online taxonomy, database, and visualization that aims to accelerate ideation of new haptic devices and interactions in human-computer interaction, virtual reality, haptics, and robotics. The current version of Haptipedia (105 devices) was created through iterative design, data entry, and evaluation by our team of experts. Next, we aim to greatly increase the number of devices and keep Haptipedia updated by soliciting data entry and verification from haptics experts worldwide.

hi

link (url) [BibTex]

link (url) [BibTex]


no image
Learning to Disentangle Latent Physical Factors for Video Prediction

Zhu, D., Munderloh, M., Rosenhahn, B., Stückler, J.

In German Conference on Pattern Recognition (GCPR), 2019, to appear (inproceedings)

ev

dataset & evaluation code video preprint [BibTex]

dataset & evaluation code video preprint [BibTex]


no image
3D Birds-Eye-View Instance Segmentation

Elich, C., Engelmann, F., Kontogianni, T., Leibe, B.

In German Conference on Pattern Recognition (GCPR), 2019, arXiv:1904.02199, to appear (inproceedings)

ev

[BibTex]

[BibTex]

2015


3D-printed Soft Microrobot for Swimming in Biological Fluids
3D-printed Soft Microrobot for Swimming in Biological Fluids

Qiu, T., Palagi, S., Fischer, P.

In Conf. Proc. IEEE Eng. Med. Biol. Soc., pages: 4922-4925, August 2015 (inproceedings)

Abstract
Microscopic artificial swimmers hold the potential to enable novel non-invasive medical procedures. In order to ease their translation towards real biomedical applications, simpler designs as well as cheaper yet more reliable materials and fabrication processes should be adopted, provided that the functionality of the microrobots can be kept. A simple single-hinge design could already enable microswimming in non-Newtonian fluids, which most bodily fluids are. Here, we address the fabrication of such single-hinge microrobots with a 3D-printed soft material. Firstly, a finite element model is developed to investigate the deformability of the 3D-printed microstructure under typical values of the actuating magnetic fields. Then the microstructures are fabricated by direct 3D-printing of a soft material and their swimming performances are evaluated. The speeds achieved with the 3D-printed microrobots are comparable to those obtained in previous work with complex fabrication procedures, thus showing great promise for 3D-printed microrobots to be operated in biological fluids.

pf

link (url) DOI [BibTex]

2015


link (url) DOI [BibTex]


no image
Human Machine Interface for Dexto Eka: - The humanoid robot

Kumra, S., Mohan, M., Gupta, S., Vaswani, H.

In Proceedings of the IEEE International Conference on Robotics, Automation, Control and Embedded Systems (RACE), Chennai, India, Febuary 2015 (inproceedings)

Abstract
This paper illustrates hybrid control system of the humanoid robot, Dexto:Eka: focusing on the dependent or slave mode. Efficiency of any system depends on the fluid operation of its control system. Here, we elucidate the control of 12 DoF robotic arms and an omnidirectional mecanum wheel drive using an exo-frame, and a Graphical User Interface (GUI) and a control column. This paper comprises of algorithms, control mechanisms and overall flow of execution for the regulation of robotic arms, graphical user interface and locomotion.

hi

DOI [BibTex]

DOI [BibTex]


no image
Conception and development of Dexto:Eka: The Humanoid Robot - Part IV

Kumra, S., Mohan, M., Vaswani, H., Gupta, S.

In Proceedings of the IEEE International Conference on Robotics, Automation, Control and Embedded Systems (RACE), Febuary 2015 (inproceedings)

Abstract
This paper elucidates the fourth phase of the development of `Dexto:Eka: - The Humanoid Robot'. It lays special emphasis on the conception of the locomotion drive and the development of vision based system that aids navigation and tele-operation. The first three phases terminated with the completion of two robotic arms with six degrees of freedom each, structural development and the creation of a human machine interface that included an exo-frame, a control column and a graphical user interface. This phase also involved the enhancement of the exo-frame to a vision based system using a Kinect camera. The paper also focuses on the reasons behind choosing the locomotion drive and the benefits it has.

hi

DOI [BibTex]

DOI [BibTex]

2013


no image
Governance of Humanoid Robot Using Master Exoskeleton

Kumra, S., Mohan, M., Gupta, S., Vaswani, H.

In Proceedings of the IEEE International Symposium on Robotics (ISR), Seoul, South Korea, October 2013 (inproceedings)

Abstract
Dexto:Eka: is an adult-size humanoid robot being developed with the aim of achieving tele-presence. The paper sheds light on the control of this robot using a Master Exoskeleton which comprises of an Exo-Frame, a Control Column and a Graphical User Interface. It further illuminates the processes and algorithms that have been utilized to make an efficient system that would effectively emulate a tele-operator.

hi

DOI [BibTex]

2013


DOI [BibTex]


no image
Design and development part 2 of Dexto:Eka: - The humanoid robot

Kumra, S., Mohan, M., Gupta, S., Vaswani, H.

In Proceedings of the International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, August 2013 (inproceedings)

Abstract
Through this paper, we elucidate the second phase of the design and development of the tele-operated humanoid robot Dexto:Eka:. Phase one comprised of the development of a 6 DoF left anthropomorphic arm and left exo-frame. Here, we illustrate the development of the right arm, right exo-frame, torso, backbone, human machine interface and omni-directional locomotion system. Dexto:Eka: will be able to communicate with a remote user through Wi-Fi. An exo-frame capacitates it to emulate human arms and its locomotion is controlled by joystick. A Graphical User Interface monitors and helps in controlling the system.

hi

DOI [BibTex]

DOI [BibTex]