Header logo is


2019


Soft-magnetic coatings as possible sensors for magnetic imaging of superconductors
Soft-magnetic coatings as possible sensors for magnetic imaging of superconductors

Ionescu, A., Simmendinger, J., Bihler, M., Miksch, C., Fischer, P., Soltan, S., Schütz, G., Albrecht, J.

Supercond. Sci. and Tech., 33, pages: 015002, IOP, December 2019 (article)

Abstract
Magnetic imaging of superconductors typically requires a soft-magnetic material placed on top of the superconductor to probe local magnetic fields. For reasonable results the influence of the magnet onto the superconductor has to be small. Thin YBCO films with soft-magnetic coatings are investigated using SQUID magnetometry. Detailed measurements of the magnetic moment as a function of temperature, magnetic field and time have been performed for different heterostructures. It is found that the modification of the superconducting transport in these heterostructures strongly depends on the magnetic and structural properties of the soft-magnetic material. This effect is especially pronounced for an inhomogeneous coating consisting of ferromagnetic nanoparticles.

pf mms

link (url) DOI [BibTex]

2019


link (url) DOI [BibTex]


Acoustic hologram enhanced phased arrays for ultrasonic particle manipulation
Acoustic hologram enhanced phased arrays for ultrasonic particle manipulation

Cox, L., Melde, K., Croxford, A., Fischer, P., Drinkwater, B.

Phys. Rev. Applied, 12, pages: 064055, November 2019 (article)

Abstract
The ability to shape ultrasound fields is important for particle manipulation, medical therapeutics and imaging applications. If the amplitude and/or phase is spatially varied across the wavefront then it is possible to project ‘acoustic images’. When attempting to form an arbitrary desired static sound field, acoustic holograms are superior to phased arrays due to their significantly higher phase fidelity. However, they lack the dynamic flexibility of phased arrays. Here, we demonstrate how to combine the high-fidelity advantages of acoustic holograms with the dynamic control of phased arrays in the ultrasonic frequency range. Holograms are used with a 64-element phased array, driven with continuous excitation. Moving the position of the projected hologram via phase delays which steer the output beam is demonstrated experimentally. This allows the creation of a much more tightly focused point than with the phased array alone, whilst still being reconfigurable. It also allows the complex movement at a water-air interface of a “phase surfer” along a phase track or the manipulation of a more arbitrarily shaped particle via amplitude traps. Furthermore, a particle manipulation device with two emitters and a single split hologram is demonstrated that allows the positioning of a “phase surfer” along a 1D axis. This paper opens the door for new applications with complex manipulation of ultrasound whilst minimising the complexity and cost of the apparatus.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Fast Feedback Control over Multi-hop Wireless Networks with Mode Changes and Stability Guarantees
Fast Feedback Control over Multi-hop Wireless Networks with Mode Changes and Stability Guarantees

Baumann, D., Mager, F., Jacob, R., Thiele, L., Zimmerling, M., Trimpe, S.

ACM Transactions on Cyber-Physical Systems, 4(2):18, November 2019 (article)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


A Helical Microrobot with an Optimized Propeller-Shape for Propulsion in Viscoelastic Biological Media
A Helical Microrobot with an Optimized Propeller-Shape for Propulsion in Viscoelastic Biological Media

Li., D., Jeong, M., Oren, E., Yu, T., Qiu, T.

Robotics, 8, pages: 87, MDPI, October 2019 (article)

Abstract
One major challenge for microrobots is to penetrate and effectively move through viscoelastic biological tissues. Most existing microrobots can only propel in viscous liquids. Recent advances demonstrate that sub-micron robots can actively penetrate nanoporous biological tissue, such as the vitreous of the eye. However, it is still difficult to propel a micron-sized device through dense biological tissue. Here, we report that a special twisted helical shape together with a high aspect ratio in cross-section permit a microrobot with a diameter of hundreds-of-micrometers to move through mouse liver tissue. The helical microrobot is driven by a rotating magnetic field and localized by ultrasound imaging inside the tissue. The twisted ribbon is made of molybdenum and a sharp tip is chemically etched to generate a higher pressure at the edge of the propeller to break the biopolymeric network of the dense tissue.

pf

link (url) DOI [BibTex]


Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel
Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel

Ma, Z., Holle, A., Melde, K., Qiu, T., Poeppel, K., Kadiri, V., Fischer, P.

Adv. Mat., October 2019 (article)

Abstract
Acoustophoresis is promising as a rapid, biocompatible, non-contact cell manipulation method, where cells are arranged along the nodes or antinodes of the acoustic field. Typically, the acoustic field is formed in a resonator, which results in highly symmetric regular patterns. However, arbitrary, non-symmetrically shaped cell assemblies are necessary to obtain the irregular cellular arrangements found in biological tissues. We show that arbitrarily shaped cell patterns can be obtained from the complex acoustic field distribution defined by an acoustic hologram. Attenuation of the sound field induces localized acoustic streaming and the resultant convection flow gently delivers the suspended cells to the image plane where they form the designed pattern. We show that the process can be implemented in a biocompatible collagen solution, which can then undergo gelation to immobilize the cell pattern inside the viscoelastic matrix. The patterned cells exhibit F-actin-based protrusions, which indicates that the cells grow and thrive within the matrix. Cell viability assays and brightfield imaging after one week confirm cell survival and that the patterns persist. Acoustophoretic cell manipulation by holographic fields thus holds promise for non-contact, long-range, long-term cellular pattern formation, with a wide variety of potential applications in tissue engineering and mechanobiology.

pf

link (url) DOI [BibTex]


A High-Fidelity Phantom for the Simulation and Quantitative Evaluation of Transurethral Resection of the Prostate
A High-Fidelity Phantom for the Simulation and Quantitative Evaluation of Transurethral Resection of the Prostate

Choi, E., Adams, F., Gengenbacher, A., Schlager, D., Palagi, S., Müller, P., Wetterauer, U., Miernik, A., Fischer, P., Qiu, T.

Annals of Biomed. Eng., October 2019 (article)

Abstract
Transurethral resection of the prostate (TURP) is a minimally invasive endoscopic procedure that requires experience and skill of the surgeon. To permit surgical training under realistic conditions we report a novel phantom of the human prostate that can be resected with TURP. The phantom mirrors the anatomy and haptic properties of the gland and permits quantitative evaluation of important surgical performance indicators. Mixtures of soft materials are engineered to mimic the physical properties of the human tissue, including the mechanical strength, the electrical and thermal conductivity, and the appearance under an endoscope. Electrocautery resection of the phantom closely resembles the procedure on human tissue. Ultrasound contrast agent was applied to the central zone, which was not detectable by the surgeon during the surgery but showed high contrast when imaged after the surgery, to serve as a label for the quantitative evaluation of the surgery. Quantitative criteria for performance assessment are established and evaluated by automated image analysis. We present the workflow of a surgical simulation on a prostate phantom followed by quantitative evaluation of the surgical performance. Surgery on the phantom is useful for medical training, and enables the development and testing of endoscopic and minimally invasive surgical instruments.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Interactive Materials – Drivers of Future Robotic Systems
Interactive Materials – Drivers of Future Robotic Systems

Fischer, P.

Adv. Mat., October 2019 (article)

Abstract
A robot senses its environment, processes the sensory information, acts in response to these inputs, and possibly communicates with the outside world. Robots generally achieve these tasks with electronics-based hardware or by receiving inputs from some external hardware. In contrast, simple microorganisms can autonomously perceive, act, and communicate via purely physicochemical processes in soft material systems. A key property of biological systems is that they are built from energy-consuming ‘active’ units. Exciting developments in material science show that even very simple artificial active building blocks can show surprisingly rich emergent behaviors. Active non-equilibrium systems are therefore predicted to play an essential role to realize interactive materials. A major challenge is to find robust ways to couple and integrate the energy-consuming building blocks to the mechanical structure of the material. However, success in this endeavor will lead to a new generation of sophisticated micro- and soft-robotic systems that can operate autonomously.

pf

[BibTex]


Arrays of plasmonic nanoparticle dimers with defined nanogap spacers
Arrays of plasmonic nanoparticle dimers with defined nanogap spacers

Jeong, H., Adams, M. C., Guenther, J., Alarcon-Correa, M., Kim, I., Choi, E., Miksch, C., Mark, A. F. M., Mark, A. G., Fischer, P.

ACS Nano, September 2019 (article)

Abstract
Plasmonic molecules are building blocks of metallic nanostructures that give rise to intriguing optical phenomena with similarities to those seen in molecular systems. The ability to design plasmonic hybrid structures and molecules with nanometric resolution would enable applications in optical metamaterials and sensing that presently cannot be demonstrated, because of a lack of suitable fabrication methods allowing the structural control of the plasmonic atoms on a large scale. Here we demonstrate a wafer-scale “lithography-free” parallel fabrication scheme to realize nanogap plasmonic meta-molecules with precise control over their size, shape, material, and orientation. We demonstrate how we can tune the corresponding coupled resonances through the entire visible spectrum. Our fabrication method, based on glancing angle physical vapor deposition with gradient shadowing, permits critical parameters to be varied across the wafer and thus is ideally suited to screen potential structures. We obtain billions of aligned dimer structures with controlled variation of the spectral properties across the wafer. We spectroscopically map the plasmonic resonances of gold dimer structures and show that they not only are in good agreement with numerically modeled spectra, but also remain functional, at least for a year, in ambient conditions.

pf

link (url) DOI [BibTex]


Genetically modified M13 bacteriophage nanonets for enzyme catalysis and recovery
Genetically modified M13 bacteriophage nanonets for enzyme catalysis and recovery

Kadiri, V. M., Alarcon-Correa, M., Guenther, J. P., Ruppert, J., Bill, J., Rothenstein, D., Fischer, P.

Catalysts, 9, pages: 723, August 2019 (article)

Abstract
Enzyme-based biocatalysis exhibits multiple advantages over inorganic catalysts, including the biocompatibility and the unchallenged specificity of enzymes towards their substrate. The recovery and repeated use of enzymes is essential for any realistic application in biotechnology, but is not easily achieved with current strategies. For this purpose, enzymes are often immobilized on inorganic scaffolds, which could entail a reduction of the enzymes’ activity. Here, we show that immobilization to a nano-scaled biological scaffold, a nanonetwork of end-to-end cross-linked M13 bacteriophages, ensures high enzymatic activity and at the same time allows for the simple recovery of the enzymes. The bacteriophages have been genetically engineered to express AviTags at their ends, which permit biotinylation and their specific end-to-end self-assembly while allowing space on the major coat protein for enzyme coupling. We demonstrate that the phages form nanonetwork structures and that these so-called nanonets remain highly active even after re-using the nanonets multiple times in a flow-through reactor.

pf

link (url) DOI [BibTex]


Light-controlled micromotors and soft microrobots
Light-controlled micromotors and soft microrobots

Palagi, S., Singh, D. P., Fischer, P.

Adv. Opt. Mat., 7, pages: 1900370, August 2019 (article)

Abstract
Mobile microscale devices and microrobots can be powered by catalytic reactions (chemical micromotors) or by external fields. This report is focused on the role of light as a versatile means for wirelessly powering and controlling such microdevices. Recent advances in the development of autonomous micromotors are discussed, where light permits their actuation with unprecedented control and thereby enables advances in the field of active matter. In addition, structuring the light field is a new means to drive soft microrobots that are based on (photo‐) responsive polymers. The behavior of the two main classes of thermo‐ and photoresponsive polymers adopted in microrobotics (poly(N‐isopropylacrylamide) and liquid‐crystal elastomers) is analyzed, and recent applications are reported. The advantages and limitations of controlling micromotors and microrobots by light are reviewed, and some of the remaining challenges in the development of novel photo‐active materials for micromotors and microrobots are discussed.

pf

link (url) DOI [BibTex]


Learning Variable Impedance Control for Contact Sensitive Tasks
Learning Variable Impedance Control for Contact Sensitive Tasks

Bogdanovic, M., Khadiv, M., Righetti, L.

arXiv preprint, arXiv:1907.07500, July 2019 (article)

Abstract
Reinforcement learning algorithms have shown great success in solving different problems ranging from playing video games to robotics. However, they struggle to solve delicate robotic problems, especially those involving contact interactions. Though in principle a policy outputting joint torques should be able to learn these tasks, in practice we see that they have difficulty to robustly solve the problem without any structure in the action space. In this paper, we investigate how the choice of action space can give robust performance in presence of contact uncertainties. We propose to learn a policy that outputs impedance and desired position in joint space as a function of system states without imposing any other structure to the problem. We compare the performance of this approach to torque and position control policies under different contact uncertainties. Extensive simulation results on two different systems, a hopper (floating-base) with intermittent contacts and a manipulator (fixed-base) wiping a table, show that our proposed approach outperforms policies outputting torque or position in terms of both learning rate and robustness to environment uncertainty.

mg

[BibTex]


Implementation of a 6-{DOF} Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues
Implementation of a 6-DOF Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues

Young, E. M., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 12(3):295-306, June 2019 (article)

Abstract
Existing fingertip haptic devices can deliver different subsets of tactile cues in a compact package, but we have not yet seen a wearable six-degree-of-freedom (6-DOF) display. This paper presents the Fuppeteer (short for Fingertip Puppeteer), a device that is capable of controlling the position and orientation of a flat platform, such that any combination of normal and shear force can be delivered at any location on any human fingertip. We build on our previous work of designing a parallel continuum manipulator for fingertip haptics by presenting a motorized version in which six flexible Nitinol wires are actuated via independent roller mechanisms and proportional-derivative controllers. We evaluate the settling time and end-effector vibrations observed during system responses to step inputs. After creating a six-dimensional lookup table and adjusting simulated inputs using measured Jacobians, we show that the device can make contact with all parts of the fingertip with a mean error of 1.42 mm. Finally, we present results from a human-subject study. A total of 24 users discerned 9 evenly distributed contact locations with an average accuracy of 80.5%. Translational and rotational shear cues were identified reasonably well near the center of the fingertip and more poorly around the edges.

hi

DOI [BibTex]


Resource-aware IoT Control: Saving Communication through Predictive Triggering
Resource-aware IoT Control: Saving Communication through Predictive Triggering

Trimpe, S., Baumann, D.

IEEE Internet of Things Journal, 6(3):5013-5028, June 2019 (article)

Abstract
The Internet of Things (IoT) interconnects multiple physical devices in large-scale networks. When the 'things' coordinate decisions and act collectively on shared information, feedback is introduced between them. Multiple feedback loops are thus closed over a shared, general-purpose network. Traditional feedback control is unsuitable for design of IoT control because it relies on high-rate periodic communication and is ignorant of the shared network resource. Therefore, recent event-based estimation methods are applied herein for resource-aware IoT control allowing agents to decide online whether communication with other agents is needed, or not. While this can reduce network traffic significantly, a severe limitation of typical event-based approaches is the need for instantaneous triggering decisions that leave no time to reallocate freed resources (e.g., communication slots), which hence remain unused. To address this problem, novel predictive and self triggering protocols are proposed herein. From a unified Bayesian decision framework, two schemes are developed: self triggers that predict, at the current triggering instant, the next one; and predictive triggers that check at every time step, whether communication will be needed at a given prediction horizon. The suitability of these triggers for feedback control is demonstrated in hardware experiments on a cart-pole, and scalability is discussed with a multi-vehicle simulation.

ics

PDF arXiv DOI [BibTex]

PDF arXiv DOI [BibTex]


Self-Assembled Phage-Based Colloids for High Localized Enzymatic Activity
Self-Assembled Phage-Based Colloids for High Localized Enzymatic Activity

Alarcon-Correa, M., Guenther, J., Troll, J., Kadiri, V. M., Bill, J., Fischer, P., Rothenstein, D.

ACS Nano, March 2019 (article)

Abstract
Catalytically active colloids are model systems for chemical motors and active matter. It is desirable to replace the inorganic catalysts and the toxic fuels that are often used, with biocompatible enzymatic reactions. However, compared to inorganic catalysts, enzyme-coated colloids tend to exhibit less activity. Here, we show that the self-assembly of genetically engineered M13 bacteriophages that bind enzymes to magnetic beads ensures high and localized enzymatic activity. These phage-decorated colloids provide a proteinaceous environment for directed enzyme immobilization. The magnetic properties of the colloidal carrier particle permit repeated enzyme recovery from a reaction solution, while the enzymatic activity is retained. Moreover, localizing the phage-based construct with a magnetic field in a microcontainer allows the enzyme-phage-colloids to function as an enzymatic micropump, where the enzymatic reaction generates a fluid flow. This system shows the fastest fluid flow reported to date by a biocompatible enzymatic micropump. In addition, it is functional in complex media including blood where the enzyme driven micropump can be powered at the physiological blood-urea concentration.

pf

link (url) DOI [BibTex]


Absolute diffusion measurements of active enzyme solutions by NMR
Absolute diffusion measurements of active enzyme solutions by NMR

Guenther, J., Majer, G., Fischer, P.

J. Chem. Phys., 150(124201), March 2019 (article)

Abstract
The diffusion of enzymes is of fundamental importance for many biochemical processes. Enhanced or directed enzyme diffusion can alter the accessibility of substrates and the organization of enzymes within cells. Several studies based on fluorescence correlation spectroscopy (FCS) report enhanced diffusion of enzymes upon interaction with their substrate or inhibitor. In this context, major importance is given to the enzyme fructose-bisphosphate aldolase, for which enhanced diffusion has been reported even though the catalysed reaction is endothermic. Additionally, enhanced diffusion of tracer particles surrounding the active aldolase enzymes has been reported. These studies suggest that active enzymes can act as chemical motors that self-propel and give rise to enhanced diffusion. However, fluorescence studies of enzymes can, despite several advantages, suffer from artefacts. Here we show that the absolute diffusion coefficients of active enzyme solutions can be determined with Pulsed Field Gradient Nuclear Magnetic Resonance (PFG-NMR). The advantage of PFG-NMR is that the motion of the molecule of interest is directly observed in its native state without the need for any labelling. Further, PFG-NMR is model-free and thus yields absolute diffusion constants. Our PFG-NMR experiments of solutions containing active fructose-bisphosphate aldolase from rabbit muscle do not show any diffusion enhancement for the active enzymes nor the surrounding molecules. Additionally, we do not observe any diffusion enhancement of aldolase in the presence of its inhibitor pyrophosphate.

pf

link (url) DOI [BibTex]


Chemical Nanomotors at the Gram Scale Form a Dense Active Optorheological Medium
Chemical Nanomotors at the Gram Scale Form a Dense Active Optorheological Medium

Choudhury, U., Singh, D. P., Qiu, T., Fischer, P.

Adv. Mat., (1807382), Febuary 2019 (article)

Abstract
The rheological properties of a colloidal suspension are a function of the concentration of the colloids and their interactions. While suspensions of passive colloids are well studied and have been shown to form crystals, gels, and glasses, examples of energy‐consuming “active” colloidal suspensions are still largely unexplored. Active suspensions of biological matter, such as motile bacteria or dense mixtures of active actin–motor–protein mixtures have, respectively, reveals superfluid‐like and gel‐like states. Attractive inanimate systems for active matter are chemically self‐propelled particles. It has so far been challenging to use these swimming particles at high enough densities to affect the bulk material properties of the suspension. Here, it is shown that light‐triggered asymmetric titanium dioxide that self‐propel, can be obtained in large quantities, and self‐organize to make a gram‐scale active medium. The suspension shows an activity‐dependent tenfold reversible change in its bulk viscosity.

pf

link (url) DOI [BibTex]


First Observation of Optical Activity in Hyper-Rayleigh Scattering
First Observation of Optical Activity in Hyper-Rayleigh Scattering

Collins, J., Rusimova, K., Hooper, D., Jeong, H. H., Ohnoutek, L., Pradaux-Caggiano, F., Verbiest, T., Carbery, D., Fischer, P., Valev, V.

Phys. Rev. X, 9(011024), January 2019 (article)

Abstract
Chiral nano- or metamaterials and surfaces enable striking photonic properties, such as negative refractive index and superchiral light, driving promising applications in novel optical components, nanorobotics, and enhanced chiral molecular interactions with light. In characterizing chirality, although nonlinear chiroptical techniques are typically much more sensitive than their linear optical counterparts, separating true chirality from anisotropy is a major challenge. Here, we report the first observation of optical activity in second-harmonic hyper-Rayleigh scattering (HRS). We demonstrate the effect in a 3D isotropic suspension of Ag nanohelices in water. The effect is 5 orders of magnitude stronger than linear optical activity and is well pronounced above the multiphoton luminescence background. Because of its sensitivity, isotropic environment, and straightforward experimental geometry, HRS optical activity constitutes a fundamental experimental breakthrough in chiral photonics for media including nanomaterials, metamaterials, and chemical molecules.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study
Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study

Neumann-Brosig, M., Marco, A., Schwarzmann, D., Trimpe, S.

IEEE Transactions on Control Systems Technology, 2019 (article) Accepted

Abstract
Bayesian optimization is proposed for automatic learning of optimal controller parameters from experimental data. A probabilistic description (a Gaussian process) is used to model the unknown function from controller parameters to a user-defined cost. The probabilistic model is updated with data, which is obtained by testing a set of parameters on the physical system and evaluating the cost. In order to learn fast, the Bayesian optimization algorithm selects the next parameters to evaluate in a systematic way, for example, by maximizing information gain about the optimum. The algorithm thus iteratively finds the globally optimal parameters with only few experiments. Taking throttle valve control as a representative industrial control example, the proposed auto-tuning method is shown to outperform manual calibration: it consistently achieves better performance with a low number of experiments. The proposed auto-tuning framework is flexible and can handle different control structures and objectives.

ics

arXiv (PDF) DOI Project Page [BibTex]

arXiv (PDF) DOI Project Page [BibTex]


no image
How Does It Feel to Clap Hands with a Robot?

Fitter, N. T., Kuchenbecker, K. J.

International Journal of Social Robotics, 2019 (article) Accepted

Abstract
Future robots may need lighthearted physical interaction capabilities to connect with people in meaningful ways. To begin exploring how users perceive playful human–robot hand-to-hand interaction, we conducted a study with 20 participants. Each user played simple hand-clapping games with the Rethink Robotics Baxter Research Robot during a 1-h-long session involving 24 randomly ordered conditions that varied in facial reactivity, physical reactivity, arm stiffness, and clapping tempo. Survey data and experiment recordings demonstrate that this interaction is viable: all users successfully completed the experiment and mentioned enjoying at least one game without prompting. Hand-clapping tempo was highly salient to users, and human-like robot errors were more widely accepted than mechanical errors. Furthermore, perceptions of Baxter varied in the following statistically significant ways: facial reactivity increased the robot’s perceived pleasantness and energeticness; physical reactivity decreased pleasantness, energeticness, and dominance; higher arm stiffness increased safety and decreased dominance; and faster tempo increased energeticness and increased dominance. These findings can motivate and guide roboticists who want to design social–physical human–robot interactions.

hi

[BibTex]

[BibTex]


Tactile Roughness Perception of Virtual Gratings by Electrovibration
Tactile Roughness Perception of Virtual Gratings by Electrovibration

Isleyen, A., Vardar, Y., Basdogan, C.

IEEE Transactions on Haptics, 2019 (article) Accepted

hi

[BibTex]

[BibTex]

2013


Hybrid nanocolloids with programmed three-dimensional shape and material composition
Hybrid nanocolloids with programmed three-dimensional shape and material composition

Mark, A. G., Gibbs, J. G., Lee, T., Fischer, P.

NATURE MATERIALS, 12(9):802-807, 2013, Max Planck Press Release. (article)

Abstract
Tuning the optical(1,2), electromagnetic(3,4) and mechanical properties of a material requires simultaneous control over its composition and shape(5). This is particularly challenging for complex structures at the nanoscale because surface-energy minimization generally causes small structures to be highly symmetric(5). Here we combine low-temperature shadow deposition with nanoscale patterning to realize nanocolloids with anisotropic three-dimensional shapes, feature sizes down to 20 nm and a wide choice of materials. We demonstrate the versatility of the fabrication scheme by growing three-dimensional hybrid nanostructures that contain several functional materials with the lowest possible symmetry, and by fabricating hundreds of billions of plasmonic nanohelices, which we use as chiral metafluids with record circular dichroism and tunable chiroptical properties.

Max Planck Press Release.

pf

Video - Fabrication of Designer Nanostructures DOI [BibTex]


Chiral Colloidal Molecules And Observation of The Propeller Effect
Chiral Colloidal Molecules And Observation of The Propeller Effect

Schamel, D., Pfeifer, M., Gibbs, J. G., Miksch, B., Mark, A. G., Fischer, P.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 135(33):12353-12359, 2013 (article)

Abstract
Chiral molecules play an important role in biological and chemical processes, but physical effects due to their symmetry-breaking are generally weak. Several physical chiral separation schemes which could potentially be useful, including the propeller effect, have therefore not yet been demonstrated at the molecular scale. However, it has been proposed that complex nonspherical colloidal particles could act as ``colloidal molecules{''} in mesoscopic model systems to permit the visualization of molecular phenomena that are otherwise difficult to observe. Unfortunately, it is difficult to synthesize such colloids because surface minimization generally favors the growth of symmetric particles. Here we demonstrate the production of large numbers of complex colloids with glancing angle physical vapor deposition. We use chiral colloids to demonstrate the Baranova and Zel'dovich (Baranova, N. B.; Zel'dovich, B. Y. Chem. Phys. Lett. 1978, 57, 435) propeller effect: the separation of a racemic mixture by application of a rotating field that couples to the dipole moment of the enantiomers and screw propels them in opposite directions. The handedness of the colloidal suspensions is monitored with circular differential light scattering. An exact solution for the colloid's propulsion is derived, and comparisons between the colloidal system and the corresponding effect at the molecular scale are made.

pf

Video - Nanospropellers DOI [BibTex]

Video - Nanospropellers DOI [BibTex]


Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy
Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy

Pfeifer, M., Ruf, A., Fischer, P.

OPTICS EXPRESS, 21(22):25643-25654, 2013 (article)

Abstract
We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated. (C) 2013 Optical Society of America

pf

DOI [BibTex]


Plasmonic nanohelix metamaterials with tailorable giant circular dichroism
Plasmonic nanohelix metamaterials with tailorable giant circular dichroism

Gibbs, J. G., Mark, A. G., Eslami, S., Fischer, P.

APPLIED PHYSICS LETTERS, 103(21), 2013, Featured cover article. (article)

Abstract
Plasmonic nanohelix arrays are shown to interact with electromagnetic fields in ways not typically seen with ordinary matter. Chiral metamaterials (CMMs) with feature sizes small with respect to the wavelength of visible light are a promising route to experimentally achieve such phenomena as negative refraction without the need for simultaneously negative e and mu. Here we not only show that giant circular dichroism in the visible is achievable with hexagonally arranged plasmonic nanohelix arrays, but that we can precisely tune the optical activity via morphology and lattice spacing. The discrete dipole approximation is implemented to support experimental data. (C) 2013 AIP Publishing LLC.

Featured cover article.

pf

DOI [BibTex]

DOI [BibTex]


no image
Optimal distribution of contact forces with inverse-dynamics control

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

The International Journal of Robotics Research, 32(3):280-298, March 2013 (article)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of the contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In this contribution we develop an inverse-dynamics controller for floating-base robots under contact constraints that can minimize any combination of linear and quadratic costs in the contact constraints and the commands. Our main result is the exact analytical derivation of the controller. Such a result is particularly relevant for legged robots as it allows us to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, we can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The main advantages of the controller are its simplicity, computational efficiency and robustness to model inaccuracies. We present detailed experimental results on simulated humanoid and quadruped robots as well as a real quadruped robot. The experiments demonstrate that the controller can greatly improve the robustness of locomotion of the robots.1

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Controlled Reduction with Unactuated Cyclic Variables: Application to 3D Bipedal Walking with Passive Yaw Rotation

Gregg, R., Righetti, L.

IEEE Transactions on Automatic Control, 58(10):2679-2685, October 2013 (article)

Abstract
This technical note shows that viscous damping can shape momentum conservation laws in a manner that stabilizes yaw rotation and enables steering for underactuated 3D walking. We first show that unactuated cyclic variables can be controlled by passively shaped conservation laws given a stabilizing controller in the actuated coordinates. We then exploit this result to realize controlled geometric reduction with multiple unactuated cyclic variables. We apply this underactuated control strategy to a five-link 3D biped to produce exponentially stable straight-ahead walking and steering in the presence of passive yawing.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]