Header logo is


2016


Soft continuous microrobots with multiple intrinsic degrees of freedom
Soft continuous microrobots with multiple intrinsic degrees of freedom

Palagi, S., Mark, A. G., Melde, K., Zeng, H., Parmeggiani, C., Martella, D., Wiersma, D. S., Fischer, P.

In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2016 (inproceedings)

Abstract
One of the main challenges in the development of microrobots, i.e. robots at the sub-millimeter scale, is the difficulty of adopting traditional solutions for power, control and, especially, actuation. As a result, most current microrobots are directly manipulated by external fields, and possess only a few passive degrees of freedom (DOFs). We have reported a strategy that enables embodiment, remote powering and control of a large number of DOFs in mobile soft microrobots. These consist of photo-responsive materials, such that the actuation of their soft continuous body can be selectively and dynamically controlled by structured light fields. Here we use finite-element modelling to evaluate the effective number of DOFs that are addressable in our microrobots. We also demonstrate that by this flexible approach different actuation patterns can be obtained, and thus different locomotion performances can be achieved within the very same microrobot. The reported results confirm the versatility of the proposed approach, which allows for easy application-specific optimization and online reconfiguration of the microrobot's behavior. Such versatility will enable advanced applications of robotics and automation at the micro scale.

pf

DOI [BibTex]

2016


DOI [BibTex]


Wireless actuator based on ultrasonic bubble streaming
Wireless actuator based on ultrasonic bubble streaming

Qiu, T., Palagi, S., Mark, A. G., Melde, K., Fischer, P.

In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2016 (inproceedings)

Abstract
Miniaturized actuators are a key element for the manipulation and automation at small scales. Here, we propose a new miniaturized actuator, which consists of an array of micro gas bubbles immersed in a fluid. Under ultrasonic excitation, the oscillation of micro gas bubbles results in acoustic streaming and provides a propulsive force that drives the actuator. The actuator was fabricated by lithography and fluidic streaming was observed under ultrasound excitation. Theoretical modelling and numerical simulations were carried out to show that lowing the surface tension results in a larger amplitude of the bubble oscillation, and thus leads to a higher propulsive force. Experimental results also demonstrate that the propulsive force increases 3.5 times when the surface tension is lowered by adding a surfactant. An actuator with a 4×4 mm 2 surface area provides a driving force of about 0.46 mN, suggesting that it is possible to be used as a wireless actuator for small-scale robots and medical instruments.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Active Uncertainty Calibration in Bayesian ODE Solvers
Active Uncertainty Calibration in Bayesian ODE Solvers

Kersting, H., Hennig, P.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 309-318, (Editors: Ihler, A. and Janzing, D.), AUAI Press, June 2016 (conference)

Abstract
There is resurging interest, in statistics and machine learning, in solvers for ordinary differential equations (ODEs) that return probability measures instead of point estimates. Recently, Conrad et al.~introduced a sampling-based class of methods that are `well-calibrated' in a specific sense. But the computational cost of these methods is significantly above that of classic methods. On the other hand, Schober et al.~pointed out a precise connection between classic Runge-Kutta ODE solvers and Gaussian filters, which gives only a rough probabilistic calibration, but at negligible cost overhead. By formulating the solution of ODEs as approximate inference in linear Gaussian SDEs, we investigate a range of probabilistic ODE solvers, that bridge the trade-off between computational cost and probabilistic calibration, and identify the inaccurate gradient measurement as the crucial source of uncertainty. We propose the novel filtering-based method Bayesian Quadrature filtering (BQF) which uses Bayesian quadrature to actively learn the imprecision in the gradient measurement by collecting multiple gradient evaluations.

ei pn

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


Automatic LQR Tuning Based on Gaussian Process Global Optimization
Automatic LQR Tuning Based on Gaussian Process Global Optimization

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 270-277, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree- of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four- dimensional tuning problems highlight the method’s potential for automatic controller tuning on robotic platforms.

am ics pn

Video - Automatic LQR Tuning Based on Gaussian Process Global Optimization - ICRA 2016 Video - Automatic Controller Tuning on a Two-legged Robot PDF DOI Project Page [BibTex]

Video - Automatic LQR Tuning Based on Gaussian Process Global Optimization - ICRA 2016 Video - Automatic Controller Tuning on a Two-legged Robot PDF DOI Project Page [BibTex]


no image
Batch Bayesian Optimization via Local Penalization

González, J., Dai, Z., Hennig, P., Lawrence, N.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 648-657, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C.), May 2016 (conference)

ei pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Auxetic Metamaterial Simplifies Soft Robot Design
Auxetic Metamaterial Simplifies Soft Robot Design

Mark, A. G., Palagi, S., Qiu, T., Fischer, P.

In 2016 IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 4951-4956, May 2016 (inproceedings)

Abstract
Soft materials are being adopted in robotics in order to facilitate biomedical applications and in order to achieve simpler and more capable robots. One route to simplification is to design the robot's body using `smart materials' that carry the burden of control and actuation. Metamaterials enable just such rational design of the material properties. Here we present a soft robot that exploits mechanical metamaterials for the intrinsic synchronization of two passive clutches which contact its travel surface. Doing so allows it to move through an enclosed passage with an inchworm motion propelled by a single actuator. Our soft robot consists of two 3D-printed metamaterials that implement auxetic and normal elastic properties. The design, fabrication and characterization of the metamaterials are described. In addition, a working soft robot is presented. Since the synchronization mechanism is a feature of the robot's material body, we believe that the proposed design will enable compliant and robust implementations that scale well with miniaturization.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Probabilistic Approximate Least-Squares
Probabilistic Approximate Least-Squares

Bartels, S., Hennig, P.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 676-684, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C. ), May 2016 (conference)

Abstract
Least-squares and kernel-ridge / Gaussian process regression are among the foundational algorithms of statistics and machine learning. Famously, the worst-case cost of exact nonparametric regression grows cubically with the data-set size; but a growing number of approximations have been developed that estimate good solutions at lower cost. These algorithms typically return point estimators, without measures of uncertainty. Leveraging recent results casting elementary linear algebra operations as probabilistic inference, we propose a new approximate method for nonparametric least-squares that affords a probabilistic uncertainty estimate over the error between the approximate and exact least-squares solution (this is not the same as the posterior variance of the associated Gaussian process regressor). This allows estimating the error of the least-squares solution on a subset of the data relative to the full-data solution. The uncertainty can be used to control the computational effort invested in the approximation. Our algorithm has linear cost in the data-set size, and a simple formal form, so that it can be implemented with a few lines of code in programming languages with linear algebra functionality.

ei pn

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


Towards Photo-Induced Swimming: Actuation of Liquid Crystalline  Elastomer in Water
Towards Photo-Induced Swimming: Actuation of Liquid Crystalline Elastomer in Water

cerretti, G., Martella, D., Zeng, H., Parmeggiani, C., Palagi, S., Mark, A. G., Melde, K., Qiu, T., Fischer, P., Wiersma, D.

In Proc. of SPIE 9738, pages: Laser 3D Manufacturing III, 97380T, April 2016 (inproceedings)

Abstract
Liquid Crystalline Elastomers (LCEs) are very promising smart materials that can be made sensitive to different external stimuli, such as heat, pH, humidity and light, by changing their chemical composition. In this paper we report the implementation of a nematically aligned LCE actuator able to undergo large light-induced deformations. We prove that this property is still present even when the actuator is submerged in fresh water. Thanks to the presence of azo-dye moieties, capable of going through a reversible trans-cis photo-isomerization, and by applying light with two different wavelengths we managed to control the bending of such actuator in the liquid environment. The reported results represent the first step towards swimming microdevices powered by light.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
On the Effects of Measurement Uncertainty in Optimal Control of Contact Interactions

Ponton, B., Schaal, S., Righetti, L.

In The 12th International Workshop on the Algorithmic Foundations of Robotics WAFR, Berkeley, USA, 2016 (inproceedings)

Abstract
Stochastic Optimal Control (SOC) typically considers noise only in the process model, i.e. unknown disturbances. However, in many robotic applications involving interaction with the environment, such as locomotion and manipulation, uncertainty also comes from lack of precise knowledge of the world, which is not an actual disturbance. We analyze the effects of also considering noise in the measurement model, by devel- oping a SOC algorithm based on risk-sensitive control, that includes the dynamics of an observer in such a way that the control law explicitly de- pends on the current measurement uncertainty. In simulation results on a simple 2D manipulator, we have observed that measurement uncertainty leads to low impedance behaviors, a result in contrast with the effects of process noise that creates stiff behaviors. This suggests that taking into account measurement uncertainty could be a potentially very interesting way to approach problems involving uncertain contact interactions.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
A Convex Model of Momentum Dynamics for Multi-Contact Motion Generation

Ponton, B., Herzog, A., Schaal, S., Righetti, L.

In 2016 IEEE-RAS 16th International Conference on Humanoid Robots Humanoids, pages: 842-849, IEEE, Cancun, Mexico, 2016 (inproceedings)

Abstract
Linear models for control and motion generation of humanoid robots have received significant attention in the past years, not only due to their well known theoretical guarantees, but also because of practical computational advantages. However, to tackle more challenging tasks and scenarios such as locomotion on uneven terrain, a more expressive model is required. In this paper, we are interested in contact interaction-centered motion optimization based on the momentum dynamics model. This model is non-linear and non-convex; however, we find a relaxation of the problem that allows us to formulate it as a single convex quadratically-constrained quadratic program (QCQP) that can be very efficiently optimized and is useful for multi-contact planning. This convex model is then coupled to the optimization of end-effector contact locations using a mixed integer program, which can also be efficiently solved. This becomes relevant e.g. to recover from external pushes, where a predefined stepping plan is likely to fail and an online adaptation of the contact location is needed. The performance of our algorithm is demonstrated in several multi-contact scenarios for a humanoid robot.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inertial Sensor-Based Humanoid Joint State Estimation

Rotella, N., Mason, S., Schaal, S., Righetti, L.

In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages: 1825-1831, IEEE, Stockholm, Sweden, 2016 (inproceedings)

Abstract
This work presents methods for the determination of a humanoid robot's joint velocities and accelerations directly from link-mounted Inertial Measurement Units (IMUs) each containing a three-axis gyroscope and a three-axis accelerometer. No information about the global pose of the floating base or its links is required and precise knowledge of the link IMU poses is not necessary due to presented calibration routines. Additionally, a filter is introduced to fuse gyroscope angular velocities with joint position measurements and compensate the computed joint velocities for time-varying gyroscope biases. The resulting joint velocities are subject to less noise and delay than filtered velocities computed from numerical differentiation of joint potentiometer signals, leading to superior performance in joint feedback control as demonstrated in experiments performed on a SARCOS hydraulic humanoid.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Stepping Stabilization Using a Combination of DCM Tracking and Step Adjustment

Khadiv, M., Kleff, S., Herzog, A., Moosavian, S. A. A., Schaal, S., Righetti, L.

In 2016 4th International Conference on Robotics and Mechatronics (ICROM), pages: 130-135, IEEE, Teheran, Iran, 2016 (inproceedings)

Abstract
In this paper, a method for stabilizing biped robots stepping by a combination of Divergent Component of Motion (DCM) tracking and step adjustment is proposed. In this method, the DCM trajectory is generated, consistent with the predefined footprints. Furthermore, a swing foot trajectory modification strategy is proposed to adapt the landing point, using DCM measurement. In order to apply the generated trajectories to the full robot, a Hierarchical Inverse Dynamics (HID) is employed. The HID enables us to use different combinations of the DCM tracking and step adjustment for stabilizing different biped robots. Simulation experiments on two scenarios for two different simulated robots, one with active ankles and the other with passive ankles, are carried out. Simulation results demonstrate the effectiveness of the proposed method for robots with both active and passive ankles.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Structured contact force optimization for kino-dynamic motion generation

Herzog, A., Schaal, S., Righetti, L.

In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 2703-2710, IEEE, Daejeon, South Korea, 2016 (inproceedings)

Abstract
Optimal control approaches in combination with trajectory optimization have recently proven to be a promising control strategy for legged robots. Computationally efficient and robust algorithms were derived using simplified models of the contact interaction between robot and environment such as the linear inverted pendulum model (LIPM). However, as humanoid robots enter more complex environments, less restrictive models become increasingly important. As we leave the regime of linear models, we need to build dedicated solvers that can compute interaction forces together with consistent kinematic plans for the whole-body. In this paper, we address the problem of planning robot motion and interaction forces for legged robots given predefined contact surfaces. The motion generation process is decomposed into two alternating parts computing force and motion plans in coherence. We focus on the properties of the momentum computation leading to sparse optimal control formulations to be exploited by a dedicated solver. In our experiments, we demonstrate that our motion generation algorithm computes consistent contact forces and joint trajectories for our humanoid robot. We also demonstrate the favorable time complexity due to our formulation and composition of the momentum equations.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Balancing and Walking Using Full Dynamics LQR Control With Contact Constraints

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 63-68, IEEE, Cancun, Mexico, 2016 (inproceedings)

Abstract
Torque control algorithms which consider robot dynamics and contact constraints are important for creating dynamic behaviors for humanoids. As computational power increases, algorithms tend to also increase in complexity. However, it is not clear how much complexity is really required to create controllers which exhibit good performance. In this paper, we study the capabilities of a simple approach based on contact consistent LQR controllers designed around key poses to control various tasks on a humanoid robot. We present extensive experimental results on a hydraulic, torque controlled humanoid performing balancing and stepping tasks. This feedback control approach captures the necessary synergies between the DoFs of the robot to guarantee good control performance. We show that for the considered tasks, it is only necessary to re-linearize the dynamics of the robot at different contact configurations and that increasing the number of LQR controllers along desired trajectories does not improve performance. Our result suggest that very simple controllers can yield good performance competitive with current state of the art, but more complex, optimization-based whole-body controllers. A video of the experiments can be found at https://youtu.be/5T08CNKV1hw.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Step Timing Adjustement: a Step toward Generating Robust Gaits

Khadiv, M., Herzog, A., Moosavian, S. A. A., Righetti, L.

In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 35-42, IEEE, Cancun, Mexico, 2016 (inproceedings)

Abstract
Step adjustment for humanoid robots has been shown to improve robustness in gaits. However, step duration adaptation is often neglected in control strategies. In this paper, we propose an approach that combines both step location and timing adjustment for generating robust gaits. In this approach, step location and step timing are decided, based on feedback from the current state of the robot. The proposed approach is comprised of two stages. In the first stage, the nominal step location and step duration for the next step or a previewed number of steps are specified. In this stage which is done at the start of each step, the main goal is to specify the best step length and step duration for a desired walking speed. The second stage deals with finding the best landing point and landing time of the swing foot at each control cycle. In this stage, stability of the gaits is preserved by specifying a desired offset between the swing foot landing point and the Divergent Component of Motion (DCM) at the end of current step. After specifying the landing point of the swing foot at a desired time, the swing foot trajectory is regenerated at each control cycle to realize desired landing properties. Simulation on different scenarios shows the robustness of the generated gaits from our proposed approach compared to the case where no timing adjustment is employed.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2012


Quasi-Newton Methods: A New Direction
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

In Proceedings of the 29th International Conference on Machine Learning, pages: 25-32, ICML ’12, (Editors: John Langford and Joelle Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

Abstract
Four decades after their invention, quasi- Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

ei ps pn

website+code pdf link (url) [BibTex]

2012


website+code pdf link (url) [BibTex]


no image
Learning Tracking Control with Forward Models

Bócsi, B., Hennig, P., Csató, L., Peters, J.

In pages: 259 -264, IEEE International Conference on Robotics and Automation (ICRA), May 2012 (inproceedings)

Abstract
Performing task-space tracking control on redundant robot manipulators is a difficult problem. When the physical model of the robot is too complex or not available, standard methods fail and machine learning algorithms can have advantages. We propose an adaptive learning algorithm for tracking control of underactuated or non-rigid robots where the physical model of the robot is unavailable. The control method is based on the fact that forward models are relatively straightforward to learn and local inversions can be obtained via local optimization. We use sparse online Gaussian process inference to obtain a flexible probabilistic forward model and second order optimization to find the inverse mapping. Physical experiments indicate that this approach can outperform state-of-the-art tracking control algorithms in this context.

ei pn

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Approximate Gaussian Integration using Expectation Propagation

Cunningham, J., Hennig, P., Lacoste-Julien, S.

In pages: 1-11, -, January 2012 (inproceedings) Submitted

Abstract
While Gaussian probability densities are omnipresent in applied mathematics, Gaussian cumulative probabilities are hard to calculate in any but the univariate case. We offer here an empirical study of the utility of Expectation Propagation (EP) as an approximate integration method for this problem. For rectangular integration regions, the approximation is highly accurate. We also extend the derivations to the more general case of polyhedral integration regions. However, we find that in this polyhedral case, EP's answer, though often accurate, can be almost arbitrarily wrong. These unexpected results elucidate an interesting and non-obvious feature of EP not yet studied in detail, both for the problem of Gaussian probabilities and for EP more generally.

ei pn

Web [BibTex]

Web [BibTex]


no image
Kernel Topic Models

Hennig, P., Stern, D., Herbrich, R., Graepel, T.

In Fifteenth International Conference on Artificial Intelligence and Statistics, 22, pages: 511-519, JMLR Proceedings, (Editors: Lawrence, N. D. and Girolami, M.), JMLR.org, AISTATS , 2012 (inproceedings)

Abstract
Latent Dirichlet Allocation models discrete data as a mixture of discrete distributions, using Dirichlet beliefs over the mixture weights. We study a variation of this concept, in which the documents' mixture weight beliefs are replaced with squashed Gaussian distributions. This allows documents to be associated with elements of a Hilbert space, admitting kernel topic models (KTM), modelling temporal, spatial, hierarchical, social and other structure between documents. The main challenge is efficient approximate inference on the latent Gaussian. We present an approximate algorithm cast around a Laplace approximation in a transformed basis. The KTM can also be interpreted as a type of Gaussian process latent variable model, or as a topic model conditional on document features, uncovering links between earlier work in these areas.

ei pn

PDF Web [BibTex]

PDF Web [BibTex]


no image
Encoding of Periodic and their Transient Motions by a Single Dynamic Movement Primitive

Ernesti, J., Righetti, L., Do, M., Asfour, T., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 57-64, IEEE, Osaka, Japan, November 2012 (inproceedings)

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Force Control Policies for Compliant Robotic Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In ICML’12 Proceedings of the 29th International Coference on International Conference on Machine Learning, pages: 49-50, Edinburgh, Scotland, 2012 (inproceedings)

am mg

[BibTex]

[BibTex]


no image
Quadratic programming for inverse dynamics with optimal distribution of contact forces

Righetti, L., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 538-543, IEEE, Osaka, Japan, November 2012 (inproceedings)

Abstract
In this contribution we propose an inverse dynamics controller for a humanoid robot that exploits torque redundancy to minimize any combination of linear and quadratic costs in the contact forces and the commands. In addition the controller satisfies linear equality and inequality constraints in the contact forces and the commands such as torque limits, unilateral contacts or friction cones limits. The originality of our approach resides in the formulation of the problem as a quadratic program where we only need to solve for the control commands and where the contact forces are optimized implicitly. Furthermore, we do not need a structured representation of the dynamics of the robot (i.e. an explicit computation of the inertia matrix). It is in contrast with existing methods based on quadratic programs. The controller is then robust to uncertainty in the estimation of the dynamics model and the optimization is fast enough to be implemented in high bandwidth torque control loops that are increasingly available on humanoid platforms. We demonstrate properties of our controller with simulations of a human size humanoid robot.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Towards Associative Skill Memories

Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 309-315, IEEE, Osaka, Japan, November 2012 (inproceedings)

Abstract
Movement primitives as basis of movement planning and control have become a popular topic in recent years. The key idea of movement primitives is that a rather small set of stereotypical movements should suffice to create a large set of complex manipulation skills. An interesting side effect of stereotypical movement is that it also creates stereotypical sensory events, e.g., in terms of kinesthetic variables, haptic variables, or, if processed appropriately, visual variables. Thus, a movement primitive executed towards a particular object in the environment will associate a large number of sensory variables that are typical for this manipulation skill. These association can be used to increase robustness towards perturbations, and they also allow failure detection and switching towards other behaviors. We call such movement primitives augmented with sensory associations Associative Skill Memories (ASM). This paper addresses how ASMs can be acquired by imitation learning and how they can create robust manipulation skill by determining subsequent ASMs online to achieve a particular manipulation goal. Evaluation for grasping and manipulation with a Barrett WAM/Hand illustrate our approach.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Template-based learning of grasp selection

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Asfour, T., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 2379-2384, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
The ability to grasp unknown objects is an important skill for personal robots, which has been addressed by many present and past research projects, but still remains an open problem. A crucial aspect of grasping is choosing an appropriate grasp configuration, i.e. the 6d pose of the hand relative to the object and its finger configuration. Finding feasible grasp configurations for novel objects, however, is challenging because of the huge variety in shape and size of these objects. Moreover, possible configurations also depend on the specific kinematics of the robotic arm and hand in use. In this paper, we introduce a new grasp selection algorithm able to find object grasp poses based on previously demonstrated grasps. Assuming that objects with similar shapes can be grasped in a similar way, we associate to each demonstrated grasp a grasp template. The template is a local shape descriptor for a possible grasp pose and is constructed using 3d information from depth sensors. For each new object to grasp, the algorithm then finds the best grasp candidate in the library of templates. The grasp selection is also able to improve over time using the information of previous grasp attempts to adapt the ranking of the templates. We tested the algorithm on two different platforms, the Willow Garage PR2 and the Barrett WAM arm which have very different hands. Our results show that the algorithm is able to find good grasp configurations for a large set of objects from a relatively small set of demonstrations, and does indeed improve its performance over time.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic depth image registration incorporating nonvisual information

Wüthrich, M., Pastor, P., Righetti, L., Billard, A., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 3637-3644, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
In this paper, we derive a probabilistic registration algorithm for object modeling and tracking. In many robotics applications, such as manipulation tasks, nonvisual information about the movement of the object is available, which we will combine with the visual information. Furthermore we do not only consider observations of the object, but we also take space into account which has been observed to not be part of the object. Furthermore we are computing a posterior distribution over the relative alignment and not a point estimate as typically done in for example Iterative Closest Point (ICP). To our knowledge no existing algorithm meets these three conditions and we thus derive a novel registration algorithm in a Bayesian framework. Experimental results suggest that the proposed methods perform favorably in comparison to PCL [1] implementations of feature mapping and ICP, especially if nonvisual information is available.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2008


no image
Pattern generators with sensory feedback for the control of quadruped locomotion

Righetti, L., Ijspeert, A.

In 2008 IEEE International Conference on Robotics and Automation, pages: 819-824, IEEE, Pasadena, USA, 2008 (inproceedings)

Abstract
Central pattern generators (CPGs) are becoming a popular model for the control of locomotion of legged robots. Biological CPGs are neural networks responsible for the generation of rhythmic movements, especially locomotion. In robotics, a systematic way of designing such CPGs as artificial neural networks or systems of coupled oscillators with sensory feedback inclusion is still missing. In this contribution, we present a way of designing CPGs with coupled oscillators in which we can independently control the ascending and descending phases of the oscillations (i.e. the swing and stance phases of the limbs). Using insights from dynamical system theory, we construct generic networks of oscillators able to generate several gaits under simple parameter changes. Then we introduce a systematic way of adding sensory feedback from touch sensors in the CPG such that the controller is strongly coupled with the mechanical system it controls. Finally we control three different simulated robots (iCub, Aibo and Ghostdog) using the same controller to show the effectiveness of the approach. Our simulations prove the importance of independent control of swing and stance duration. The strong mutual coupling between the CPG and the robot allows for more robust locomotion, even under non precise parameters and non-flat environment.

mg

link (url) DOI [BibTex]

2008


link (url) DOI [BibTex]


no image
Experimental Study of Limit Cycle and Chaotic Controllers for the Locomotion of Centipede Robots

Matthey, L., Righetti, L., Ijspeert, A.

In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 1860-1865, IEEE, Nice, France, sep 2008 (inproceedings)

Abstract
In this contribution we present a CPG (central pattern generator) controller based on coupled Rossler systems. It is able to generate both limit cycle and chaotic behaviors through bifurcation. We develop an experimental test bench to measure quantitatively the performance of different controllers on unknown terrains of increasing difficulty. First, we show that for flat terrains, open loop limit cycle systems are the most efficient (in terms of speed of locomotion) but that they are quite sensitive to environmental changes. Second, we show that sensory feedback is a crucial addition for unknown terrains. Third, we show that the chaotic controller with sensory feedback outperforms the other controllers in very difficult terrains and actually promotes the emergence of short synchronized movement patterns. All that is done using an unified framework for the generation of limit cycle and chaotic behaviors, where a simple parameter change can switch from one behavior to the other through bifurcation. Such flexibility would allow the automatic adaptation of the robot locomotion strategy to the terrain uncertainty.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Emergence of Interaction Among Adaptive Agents

Martius, G., Nolfi, S., Herrmann, J. M.

In Proc. From Animals to Animats 10 (SAB 2008), 5040, pages: 457-466, LNCS, Springer, 2008 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


no image
A Dynamical System for Online Learning of Periodic Movements of Unknown Waveform and Frequency

Gams, A., Righetti, L., Ijspeert, A., Lenarčič, J.

In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 85-90, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
The paper presents a two-layered system for learning and encoding a periodic signal onto a limit cycle without any knowledge on the waveform and the frequency of the signal, and without any signal processing. The first dynamical system is responsible for extracting the main frequency of the input signal. It is based on adaptive frequency phase oscillators in a feedback structure, enabling us to extract separate frequency components without any signal processing, as all of the processing is embedded in the dynamics of the system itself. The second dynamical system is responsible for learning of the waveform. It has a built-in learning algorithm based on locally weighted regression, which adjusts the weights according to the amplitude of the input signal. By combining the output of the first system with the input of the second system we can rapidly teach new trajectories to robots. The systems works online for any periodic signal and can be applied in parallel to multiple dimensions. Furthermore, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, and is computationally inexpensive. Results using simulated and hand-generated input signals, along with applying the algorithm to a HOAP-2 humanoid robot are presented.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Passive compliant quadruped robot using central pattern generators for locomotion control

Rutishauser, S., Sproewitz, A., Righetti, L., Ijspeert, A.

In 2008 IEEE International Conference on Biomedical Robotics and Biomechatronics, pages: 710-715, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
We present a new quadruped robot, ldquoCheetahrdquo, featuring three-segment pantographic legs with passive compliant knee joints. Each leg has two degrees of freedom - knee and hip joint can be actuated using proximal mounted RC servo motors, force transmission to the knee is achieved by means of a bowden cable mechanism. Simple electronics to command the actuators from a desktop computer have been designed in order to test the robot. A Central Pattern Generator (CPG) network has been implemented to generate different gaits. A parameter space search was performed and tested on the robot to optimize forward velocity.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Structure from Behavior in Autonomous Agents

Martius, G., Fiedler, K., Herrmann, J.

In Proc. IEEE Intl. Conf. Intelligent Robots and Systems (IROS 2008), pages: 858 - 862, 2008 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


no image
A modular bio-inspired architecture for movement generation for the infant-like robot iCub

Degallier, S., Righetti, L., Natale, L., Nori, F., Metta, G., Ijspeert, A.

In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 795-800, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
Movement generation in humans appears to be processed through a three-layered architecture, where each layer corresponds to a different level of abstraction in the representation of the movement. In this article, we will present an architecture reflecting this organization and based on a modular approach to human movement generation. We will show that our architecture is well suited for the online generation and modulation of motor behaviors, but also for switching between motor behaviors. This will be illustrated respectively through an interactive drumming task and through switching between reaching and crawling.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2005


no image
A dynamical systems approach to learning: a frequency-adaptive hopper robot

Buchli, J., Righetti, L., Ijspeert, A.

In Proceedings of the VIIIth European Conference on Artificial Life ECAL 2005, pages: 210-220, Springer Verlag, 2005 (inproceedings)

mg

[BibTex]

2005


[BibTex]


no image
From Dynamic Hebbian Learning for Oscillators to Adaptive Central Pattern Generators

Righetti, L., Buchli, J., Ijspeert, A.

In Proceedings of 3rd International Symposium on Adaptive Motion in Animals and Machines – AMAM 2005, Verlag ISLE, Ilmenau, 2005 (inproceedings)

mg

[BibTex]

[BibTex]


no image
Learning to Feel the Physics of a Body

Der, R., Hesse, F., Martius, G.

In Computational Intelligence for Modelling, Control and Automation, CIMCA 2005 , 2, pages: 252-257, Washington, DC, USA, 2005 (inproceedings)

Abstract
Despite the tremendous progress in robotic hardware and in both sensorial and computing efficiencies the performance of contemporary autonomous robots is still far below that of simple animals. This has triggered an intensive search for alternative approaches to the control of robots. The present paper exemplifies a general approach to the self-organization of behavior which has been developed and tested in various examples in recent years. We apply this approach to an underactuated snake like artifact with a complex physical behavior which is not known to the controller. Due to the weak forces available, the controller so to say has to develop a kind of feeling for the body which is seen to emerge from our approach in a natural way with meandering and rotational collective modes being observed in computer simulation experiments.

al

[BibTex]

[BibTex]