Header logo is


2019


Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels
Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels

Choi, E., Jeong, H., Qiu, T., Fischer, P., Palagi, S.

4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)

Abstract
Remotely controlled, automated actuation and manipulation at the microscale is essential for a number of micro-manufacturing, biology, and lab-on-a-chip applications. To transport and manipulate micro-objects, arrays of remotely controlled micro-actuators are required, which, in turn, typically require complex and expensive solid-state chips. Here, we show that a continuous surface can function as a highly parallel, many-degree of freedom, wirelessly-controlled microactuator with seamless deformation. The soft continuous surface is based on a hydrogel that undergoes a volume change in response to applied light. The fabrication of the hydrogels and the characterization of their optical and thermomechanical behaviors are reported. The temperature-dependent localized deformation of the hydrogel is also investigated by numerical simulations. Static and dynamic deformations are obtained in the soft material by projecting light fields at high spatial resolution onto the surface. By controlling such deformations in open loop and especially closed loop, automated photoactuation is achieved. The surface deformations are then exploited to examine how inert microbeads can be manipulated autonomously on the surface. We believe that the proposed approach suggests ways to implement universal 2D micromanipulation schemes that can be useful for automation in microfabrication and lab-on-a-chip applications.

pf

[BibTex]

2019


[BibTex]


Soft Phantom for the Training of Renal Calculi Diagnostics and  Lithotripsy
Soft Phantom for the Training of Renal Calculi Diagnostics and Lithotripsy

Li., D., Suarez-Ibarrola, R., Choi, E., Jeong, M., Gratzke, C., Miernik, A., Fischer, P., Qiu, T.

41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), July 2019 (conference)

Abstract
Organ models are important for medical training and surgical planning. With the fast development of additive fabrication technologies, including 3D printing, the fabrication of 3D organ phantoms with precise anatomical features becomes possible. Here, we develop the first high-resolution kidney phantom based on soft material assembly, by combining 3D printing and polymer molding techniques. The phantom exhibits both the detailed anatomy of a human kidney and the elasticity of soft tissues. The phantom assembly can be separated into two parts on the coronal plane, thus large renal calculi are readily placed at any desired location of the calyx. With our sealing method, the assembled phantom withstands a hydraulic pressure that is four times the normal intrarenal pressure, thus it allows the simulation of medical procedures under realistic pressure conditions. The medical diagnostics of the renal calculi is performed by multiple imaging modalities, including X-ray, ultrasound imaging and endoscopy. The endoscopic lithotripsy is also successfully performed on the phantom. The use of a multifunctional soft phantom assembly thus shows great promise for the simulation of minimally invasive medical procedures under realistic conditions.

pf

[BibTex]

[BibTex]


A Magnetic Actuation System for the  Active Microrheology in Soft Biomaterials
A Magnetic Actuation System for the Active Microrheology in Soft Biomaterials

Jeong, M., Choi, E., Li., D., Palagi, S., Fischer, P., Qiu, T.

4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)

Abstract
Microrheology is a key technique to characterize soft materials at small scales. The microprobe is wirelessly actuated and therefore typically only low forces or torques can be applied, which limits the range of the applied strain. Here, we report a new magnetic actuation system for microrheology consisting of an array of rotating permanent magnets, which achieves a rotating magnetic field with a spatially homogeneous high field strength of ~100 mT in a working volume of ~20×20×20 mm3. Compared to a traditional electromagnetic coil system, the permanent magnet assembly is portable and does not require cooling, and it exerts a large magnetic torque on the microprobe that is an order of magnitude higher than previous setups. Experimental results demonstrate that the measurement range of the soft gels’ elasticity covers at least five orders of magnitude. With the large actuation torque, it is also possible to study the fracture mechanics of soft biomaterials at small scales.

pf

[BibTex]

[BibTex]

2015


3D-printed Soft Microrobot for Swimming in Biological Fluids
3D-printed Soft Microrobot for Swimming in Biological Fluids

Qiu, T., Palagi, S., Fischer, P.

In Conf. Proc. IEEE Eng. Med. Biol. Soc., pages: 4922-4925, August 2015 (inproceedings)

Abstract
Microscopic artificial swimmers hold the potential to enable novel non-invasive medical procedures. In order to ease their translation towards real biomedical applications, simpler designs as well as cheaper yet more reliable materials and fabrication processes should be adopted, provided that the functionality of the microrobots can be kept. A simple single-hinge design could already enable microswimming in non-Newtonian fluids, which most bodily fluids are. Here, we address the fabrication of such single-hinge microrobots with a 3D-printed soft material. Firstly, a finite element model is developed to investigate the deformability of the 3D-printed microstructure under typical values of the actuating magnetic fields. Then the microstructures are fabricated by direct 3D-printing of a soft material and their swimming performances are evaluated. The speeds achieved with the 3D-printed microrobots are comparable to those obtained in previous work with complex fabrication procedures, thus showing great promise for 3D-printed microrobots to be operated in biological fluids.

pf

link (url) DOI [BibTex]

2015


link (url) DOI [BibTex]


no image
Combined FORC and x-ray microscopy study of magnetisation reversal in antidot lattices

Gräfe, J., Haering, F., Stahl, C., Weigand, M., Skripnik, M., Nowak, U., Ziemann, P., Wiedwald, U., Schütz, G., Goering, E.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Local control of domain wall dynamics in ferromagnetic rings

Richter, K., Mawass, M., Krone, A., Krüger, B., Weigand, M., Stoll, H., Schütz, G., Kläui, M.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ultrafast demagnetization after laser pulse irradiation in Ni: Ab-initio electron-phonon scattering and phase space calculations

Illg, C., Haag, M., Fähnle, M.

In Ultrafast Magnetism I. Proceedings of the International Conference UMC 2013, 159, pages: 131-133, Springer Proceedings in Physics, Springer, Strasbourg, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Automotive domain wall propagation in ferromagnetic rings

Richter, K., Mawass, M., Krone, A., Krüger, B., Weigand, M., Schütz, G., Stoll, H., Kläui, M.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
The third dimension: Vortex core reversal by interaction with \textquotesingleflexure modes’

Noske, M., Stoll, H., Fähnle, M., Weigand, M., Dieterle, G., Förster, J., Gangwar, A., Slavin, A., Back, C. H., Schütz, G.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Skyrmions at room temperature in magnetic multilayers

Moreau-Luchaire, C., Reyren, N., Moutafis, C., Sampaio, J., Van Horne, N., Vaz, C. A., Warnicke, P., Garcia, K., Weigand, M., Bouzehouane, K., Deranlot, C., George, J., Raabe, J., Cros, V., Fert, A.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]

2004


no image
High-speed dynamics of magnetization processes in hard magnetic particles and thin platelets

Goll, D., Kronmüller, H.

In Proceedings of the 18th International Workshop on Rare-Earth Magnets and their Applications, pages: 465-469, Laboratoire de Cristallographie/Laboratoire Louis Neel, CNRS, Grenoble, 2004 (inproceedings)

mms

[BibTex]

2004


[BibTex]


no image
High-speed dynamics of magnetization processes in hard magnetic particles and thin platelets

Goll, D., Kronmüller, H.

In Proceedings of the 18th International Workshop on Rare-Earth Magnets and their Applications, pages: 465-469, Laboratoire de Cristallographie/Laboratoire Louis Neel, CNRS, Grenoble, 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Modern nanocrystalline/nanostructured hard magnetic materials

Kronmüller, H., Goll, D.

In 272-276, pages: e319-e320, Rome [Italy], 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Modern nanostructured high-temperature permanent magnets

Goll, D., Kronmüller, H., Stadelmaier, H. H.

In Proceedings of the 18th International Workshop on Rare-Earth Magnets and their Applications, pages: 578-583, Laboratoire de Cristallographie/Laboratoire Louis Néel, CNRS, Grenoble, 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Imaging sub-ns spin dynamics in magnetic nanostructures with magnetic transmission X-ray microscopy

Fischer, P., Stoll, H., Puzic, A., Van Waeyenberge, B., Raabe, J., Haug, T., Denbeaux, G., Pearson, A., Höllinger, R., Back, C. H., Weiss, D., Schütz, G.

In Synchrotron Radiation Instrumentation, 705, pages: 1291-1294, AIP Conference Proceedings, American Institute of Physics, San Francisco, California (USA), 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Modern nanostructured high-temperature permanent magnets

Goll, D., Kronmüller, H., Stadelmaier, H. H.

In Proceedings of the 18th International Workshop on Rare-Earth Magnets and their Applications, pages: 578-583, Laboratoire de Cristallographie/Laboratoire Louis Néel, CNRS, Grenoble, 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Existence of transient temperature spike induced by SHI: evidence by ion beam analysis

Avasthi, D. K., Ghosh, S., Srivastava, S. K., Assmann, W.

In 219-220, pages: 206-214, Albuquerque, NM [USA], 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Hard magnetic hollow nanospheres

Goll, D., Berkowitz, A. E., Bertram, H. N.

In Proceedings of the 18th International Workshop on Rare-Earth Magnets and their Applications, pages: 704-707, Laboratoire de Cristallographie/Laboratoire Louis Neel, CNRS, Grenoble, 2004 (inproceedings)

mms

[BibTex]

[BibTex]