Header logo is


2014


Thumb xl cover acs ancac3 v008i009
Nanopropellers and Their Actuation in Complex Viscoelastic Media

Schamel, D., Mark, A. G., Gibbs, J. G., Miksch, C., Morozov, K. I., Leshansky, A. M., Fischer, P.

ACS Nano, 8(9):8794-8801, June 2014, Featured cover article. (article)

Abstract
Tissue and biological fluids are complex viscoelastic media with a nanoporous macromolecular structure. Here, we demonstrate that helical nanopropellers can be controllably steered through such a biological gel. The screw-propellers have a filament diameter of about 70 nm and are smaller than previously reported nanopropellers as well as any swimming microorganism. We show that the nanoscrews will move through high-viscosity solutions with comparable velocities to that of larger micropropellers, even though they are so small that Brownian forces suppress their actuation in pure water. When actuated in viscoelastic hyaluronan gels, the nanopropellers appear to have a significant advantage, as they are of the same size range as the gel’s mesh size. Whereas larger helices will show very low or negligible propulsion in hyaluronan solutions, the nanoscrews actually display significantly enhanced propulsion velocities that exceed the highest measured speeds in Newtonian fluids. The nanopropellers are not only promising for applications in the extracellular environment but small enough to be taken up by cells.

Featured cover article.

pf

Video - Helical Micro and Nanopropellers for Applications in Biological Fluidic Environments link (url) DOI [BibTex]


Thumb xl toc image
Circular polarization interferometry: circularly polarized modes of cholesteric liquid crystals

Sanchez-Castillo, A., Eslami, S., Giesselmann, F., Fischer, P.

OPTICS EXPRESS, 22(25):31227-31236, 2014 (article)

Abstract
We describe a novel polarization interferometer which permits the determination of the refractive indices for circularly-polarized light. It is based on a Jamin-Lebedeff interferometer, modified with waveplates, and permits us to experimentally determine the refractive indices n(L) and n(R) of the respectively left- and right-circularly polarized modes in a cholesteric liquid crystal. Whereas optical rotation measurements only determine the circular birefringence, i.e. the difference (n(L) - n(R)), the interferometer also permits the determination of their absolute values. We report refractive indices of a cholesteric liquid crystal in the region of selective (Bragg) reflection as a function of temperature. (C) 2014 Optical Society of America

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Self-Propelling Nanomotors in the Presence of Strong Brownian Forces

Lee, T., Alarcon-Correa, M., Miksch, C., Hahn, K., Gibbs, J. G., Fischer, P.

NANO LETTERS, 14(5):2407-2412, 2014 (article)

Abstract
Motility in living systems is due to an array of complex molecular nanomotors that are essential for the function and survival of cells. These protein nanomotors operate not only despite of but also because of stochastic forces. Artificial means of realizing motility rely on local concentration or temperature gradients that are established across a particle, resulting in slip velocities at the particle surface and thus motion of the particle relative to the fluid. However, it remains unclear if these artificial motors can function at the smallest of scales, where Brownian motion dominates and no actively propelled living organisms can be found. Recently, the first reports have appeared suggesting that the swimming mechanisms of artificial structures may also apply to enzymes that are catalytically active. Here we report a scheme to realize artificial Janus nanoparticles (JNPs) with an overall size that is comparable to that of some enzymes similar to 30 nm. Our JNPs can catalyze the decomposition of hydrogen peroxide to water and oxygen and thus actively move by self-electrophoresis. Geometric anisotropy of the Pt-Au Janus nanoparticles permits the simultaneous observation of their translational and rotational motion by dynamic light scattering. While their dynamics is strongly influenced by Brownian rotation, the artificial Janus nanomotors show bursts of linear ballistic motion resulting in enhanced diffusion.

pf

DOI [BibTex]


Thumb xl toc image
Shape control in wafer-based aperiodic 3D nanostructures

Hyeon-Ho, J., Mark, A. G., Gibbs, J. G., Reindl, T., Waizmann, U., Weis, J., Fischer, P.

NANOTECHNOLOGY, 25(23), 2014, Cover article. (article)

Abstract
Controlled local fabrication of three-dimensional (3D) nanostructures is important to explore and enhance the function of single nanodevices, but is experimentally challenging. We present a scheme based on e-beam lithography (EBL) written seeds, and glancing angle deposition (GLAD) grown structures to create nanoscale objects with defined shapes but in aperiodic arrangements. By using a continuous sacrificial corral surrounding the features of interest we grow isolated 3D nanostructures that have complex cross-sections and sidewall morphology that are surrounded by zones of clean substrate.

Cover article.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl pictire scallop
Swimming by reciprocal motion at low Reynolds number

Qiu, T., Lee, T., Mark, A. G., Morozov, K. I., Muenster, R., Mierka, O., Turek, S., Leshansky, A. M., Fischer, P.

NATURE COMMUNICATIONS, 5, 2014, Max Planck Press Release. (article)

Abstract
Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell's scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric `micro-scallop', a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids.

Max Planck Press Release.

pf

Video - A Swimming Micro-Scallop Video - Winner of the Micro-robotic Design Challenge in Hamlyn Symposium on Medical Robotics DOI [BibTex]

Video - A Swimming Micro-Scallop Video - Winner of the Micro-robotic Design Challenge in Hamlyn Symposium on Medical Robotics DOI [BibTex]


Thumb xl toc image
Nanohelices by shadow growth

Gibbs, J. G., Mark, A. G., Lee, T., Eslami, S., Schamel, D., Fischer, P.

NANOSCALE, 6(16):9457-9466, 2014 (article)

Abstract
The helix has remarkable qualities and is prevalent in many fields including mathematics, physics, chemistry, and biology. This shape, which is chiral by nature, is ubiquitous in biology with perhaps the most famous example being DNA. Other naturally occurring helices are common at the nanoscale in the form of protein secondary structures and in various macromolecules. Nanoscale helices exhibit a wide range of interesting mechanical, optical, and electrical properties which can be intentionally engineered into the structure by choosing the correct morphology and material. As technology advances, these fabrication parameters can be fine-tuned and matched to the application of interest. Herein, we focus on the fabrication and properties of nanohelices grown by a dynamic shadowing growth method combined with fast wafer-scale substrate patterning which has a number of distinct advantages. We review the fabrication methodology and provide several examples that illustrate the generality and utility of nanohelices shadow-grown on nanopatterns.

pf

Video - Fabrication of Designer Nanostructures DOI [BibTex]


Thumb xl toc image
Chiral Nanomagnets

Eslami, S., Gibbs, J. G., Rechkemmer, Y., van Slageren, J., Alarcon-Correa, M., Lee, T., Mark, A. G., Rikken, G. L. J. A., Fischer, P.

ACS PHOTONICS, 1(11):1231-1236, 2014 (article)

Abstract
We report on the enhanced optical properties of chiral magnetic nanohelices with critical dimensions comparable to the ferromagnetic domain size. They are shown to be ferromagnetic at room temperature, have defined chirality, and exhibit large optical activity in the visible as verified by electron microscopy, superconducting quantum interference device (SQUID) magnetometry, natural circular dichroism (NCD), and magnetic circular dichroism (MCD) measurements. The structures exhibit magneto-chiral dichroism (MChD), which directly demonstrates coupling between their structural chirality and magnetism. A chiral nickel (Ni) film consisting of an array of nanohelices similar to 100 nm in length exhibits an MChD anisotropy factor g(MChD) approximate to 10(-4) T-1 at room temperature in a saturation field of similar to 0.2 T, permitting polarization-independent control of the film's absorption properties through magnetic field modulation. This is also the first report of MChD in a material with structural chirality on the order of the wavelength of light, and therefore the Ni nanohelix array is a metamaterial with magnetochiral properties that can be tailored through a dynamic deposition process.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Wireless powering of e-swimmers

Roche, J., Carrara, S., Sanchez, J., Lannelongue, J., Loget, G., Bouffier, L., Fischer, P., Kuhn, A.

SCIENTIFIC REPORTS, 4, 2014 (article)

Abstract
Miniaturized structures that can move in a controlled way in solution and integrate various functionalities are attracting considerable attention due to the potential applications in fields ranging from autonomous micromotors to roving sensors. Here we introduce a concept which allows, depending on their specific design, the controlled directional motion of objects in water, combined with electronic functionalities such as the emission of light, sensing, signal conversion, treatment and transmission. The approach is based on electric field-induced polarization, which triggers different chemical reactions at the surface of the object and thereby its propulsion. This results in a localized electric current that can power in a wireless way electronic devices in water, leading to a new class of electronic swimmers (e-swimmers).

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Swelling and shrinking behaviour of photoresponsive phosphonium-based ionogel microstructures

Czugala, M., O’Connell, C., Blin, C., Fischer, P., Fraser, K. J., Benito-Lopez, F., Diamond, D.

SENSORS AND ACTUATORS B-CHEMICAL, 194, pages: 105-113, 2014 (article)

Abstract
Photoresponsive N-isopropylacrylamide ionogel microstructures are presented in this study. These ionogels are synthesised using phosphonium based room temperature ionic liquids, together with the photochromic compound benzospiropyran. The microstructures can be actuated using light irradiation, facilitating non-contact and non-invasive operation. For the first time, the characterisation of the swelling and shrinking behaviour of several photopatterned ionogel microstructures is presented and the influence of surface-area-to-volume ratio on the swelling kinetics is evaluated. It was found that the swelling and shrinking behaviour of the ionogels is strongly dependent on the nature of the ionic liquid. In particular, the {[}P-6,P-6,P-6,P-14]{[}NTf2] ionogel exhibits the greatest degree of swelling, reaching up to 180\% of its initial size, and the fastest shrinkage rate (k(sh) = 29 +/- 4 x 10(-2) s(-1)). (C) 2014 Elsevier B. V. All rights reserved.

pf

DOI [BibTex]

DOI [BibTex]

2013


Thumb xl toc image
Hybrid nanocolloids with programmed three-dimensional shape and material composition

Mark, A. G., Gibbs, J. G., Lee, T., Fischer, P.

NATURE MATERIALS, 12(9):802-807, 2013, Max Planck Press Release. (article)

Abstract
Tuning the optical(1,2), electromagnetic(3,4) and mechanical properties of a material requires simultaneous control over its composition and shape(5). This is particularly challenging for complex structures at the nanoscale because surface-energy minimization generally causes small structures to be highly symmetric(5). Here we combine low-temperature shadow deposition with nanoscale patterning to realize nanocolloids with anisotropic three-dimensional shapes, feature sizes down to 20 nm and a wide choice of materials. We demonstrate the versatility of the fabrication scheme by growing three-dimensional hybrid nanostructures that contain several functional materials with the lowest possible symmetry, and by fabricating hundreds of billions of plasmonic nanohelices, which we use as chiral metafluids with record circular dichroism and tunable chiroptical properties.

Max Planck Press Release.

pf

Video - Fabrication of Designer Nanostructures DOI [BibTex]


Thumb xl fig1
Chiral Colloidal Molecules And Observation of The Propeller Effect

Schamel, D., Pfeifer, M., Gibbs, J. G., Miksch, B., Mark, A. G., Fischer, P.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 135(33):12353-12359, 2013 (article)

Abstract
Chiral molecules play an important role in biological and chemical processes, but physical effects due to their symmetry-breaking are generally weak. Several physical chiral separation schemes which could potentially be useful, including the propeller effect, have therefore not yet been demonstrated at the molecular scale. However, it has been proposed that complex nonspherical colloidal particles could act as ``colloidal molecules{''} in mesoscopic model systems to permit the visualization of molecular phenomena that are otherwise difficult to observe. Unfortunately, it is difficult to synthesize such colloids because surface minimization generally favors the growth of symmetric particles. Here we demonstrate the production of large numbers of complex colloids with glancing angle physical vapor deposition. We use chiral colloids to demonstrate the Baranova and Zel'dovich (Baranova, N. B.; Zel'dovich, B. Y. Chem. Phys. Lett. 1978, 57, 435) propeller effect: the separation of a racemic mixture by application of a rotating field that couples to the dipole moment of the enantiomers and screw propels them in opposite directions. The handedness of the colloidal suspensions is monitored with circular differential light scattering. An exact solution for the colloid's propulsion is derived, and comparisons between the colloidal system and the corresponding effect at the molecular scale are made.

pf

Video - Nanospropellers DOI [BibTex]

Video - Nanospropellers DOI [BibTex]


Thumb xl toc image
Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy

Pfeifer, M., Ruf, A., Fischer, P.

OPTICS EXPRESS, 21(22):25643-25654, 2013 (article)

Abstract
We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated. (C) 2013 Optical Society of America

pf

DOI [BibTex]


Thumb xl applied physics cover vol 103 number 21
Plasmonic nanohelix metamaterials with tailorable giant circular dichroism

Gibbs, J. G., Mark, A. G., Eslami, S., Fischer, P.

APPLIED PHYSICS LETTERS, 103(21), 2013, Featured cover article. (article)

Abstract
Plasmonic nanohelix arrays are shown to interact with electromagnetic fields in ways not typically seen with ordinary matter. Chiral metamaterials (CMMs) with feature sizes small with respect to the wavelength of visible light are a promising route to experimentally achieve such phenomena as negative refraction without the need for simultaneously negative e and mu. Here we not only show that giant circular dichroism in the visible is achievable with hexagonally arranged plasmonic nanohelix arrays, but that we can precisely tune the optical activity via morphology and lattice spacing. The discrete dipole approximation is implemented to support experimental data. (C) 2013 AIP Publishing LLC.

Featured cover article.

pf

DOI [BibTex]

DOI [BibTex]

2011


Thumb xl toc image
Quantum-Cascade Laser-Based Vibrational Circular Dichroism

Luedeke, S., Pfeifer, M., Fischer, P.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 133(15):5704-5707, 2011 (article)

Abstract
Vibrational circular dichroism (VCD) spectra were recorded with a tunable external-cavity quantum-cascade laser (QCL). In comparison with standard thermal light sources in the IR, QCLs provide orders of magnitude more power and are therefore promising for VCD studies in strongly absorbing solvents. The brightness of this novel light source is demonstrated with VCD and IR absorption measurements of a number of compounds, including proline in water.

pf

DOI [BibTex]

2011


DOI [BibTex]


Thumb xl toc image
Actively coupled cavity ringdown spectroscopy with low-power broadband sources

Petermann, C., Fischer, P.

OPTICS EXPRESS, 19(11):10164-10173, 2011 (article)

Abstract
We demonstrate a coupling scheme for cavity enhanced absorption spectroscopy that makes use of an intracavity acousto-optical modulator to actively switch light into (and out of) a resonator. This allows cavity ringdown spectroscopy (CRDS) to be implemented with broadband nonlaser light sources with spectral power densities of less than 30 mu W/nm. Although the acousto-optical element reduces the ultimate detection limit by introducing additional losses, it permits absorptivities to be measured with a high dynamic range, especially in lossy environments. Absorption measurements for the forbidden transition of gaseous oxygen in air at similar to 760nm are presented using a low-coherence cw-superluminescent diode. The same setup was electronically configured to cover absorption losses from 1.8 x 10(-8)cm(-1) to 7.5\% per roundtrip. This could be of interest in process analytical applications. (C) 2011 Optical Society of America

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control

Fischer, P., Ghosh, A.

NANOSCALE, 3(2):557-563, 2011 (article)

Abstract
Significant progress has been made in the fabrication of micron and sub-micron structures whose motion can be controlled in liquids under ambient conditions. The aim of many of these engineering endeavors is to be able to build and propel an artificial micro-structure that rivals the versatility of biological swimmers of similar size, e. g. motile bacterial cells. Applications for such artificial ``micro-bots'' are envisioned to range from microrheology to targeted drug delivery and microsurgery, and require full motion-control under ambient conditions. In this Mini-Review we discuss the construction, actuation, and operation of several devices that have recently been reported, especially systems that can be controlled by and propelled with homogenous magnetic fields. We describe the fabrication and associated experimental challenges and discuss potential applications.

pf

Video - Nanospropellers DOI [BibTex]


Thumb xl toc image
Weak value amplified optical activity measurements

Pfeifer, M., Fischer, P.

Opt. Express, 19(17):16508-16517, OSA, 2011 (article)

Abstract
We present a new form of optical activity measurement based on a modified weak value amplification scheme. It has recently been shown experimentally that the left- and right-circular polarization components refract with slightly different angles of refraction at a chiral interface causing a linearly polarized light beam to split into two. By introducing a polarization modulation that does not give rise to a change in the optical rotation it is possible to differentiate between the two circular polarization components even after post-selection with a linear polarizer. We show that such a modified weak value amplification measurement permits the sign of the splitting and thus the handedness of the optically active medium to be determined. Angular beam separations of Δθ ∼ 1 nanoradian, which corresponds to a circular birefringence of Δn ∼ 1 × 10−9, could be measured with a relative error of less than 1%.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2007


Thumb xl toc image
Frequency-domain displacement sensing with a fiber ring-resonator containing a variable gap

Vollmer, F., Fischer, P.

SENSORS AND ACTUATORS A-PHYSICAL, 134(2):410-413, 2007 (article)

Abstract
Ring-resonators are in general not amenable to strain-free (non-contact) displacement measurements. We show that this limitation may be overcome if the ring-resonator, here a fiber-loop, is designed to contain a gap, such that the light traverses a free-space part between two aligned waveguide ends. Displacements are determined with nanometer sensitivity by measuring the associated changes in the resonance frequencies. Miniaturization should increase the sensitivity of the ring-resonator interferometer. Ring geometries that contain an optical circulator can be used to profile reflective samples. (c) 2006 Elsevier B.V. All rights reserved.

pf

DOI [BibTex]

2007


DOI [BibTex]


Thumb xl toc image
Observation of the Faraday effect via beam deflection in a longitudinal magnetic field

Ghosh, A., Hill, W., Fischer, P.

PHYSICAL REVIEW A, 76(5), 2007 (article)

Abstract
We show that magnetic-field-induced circular differential deflection of light can be observed in reflection or refraction at a single interface. The difference in the reflection or refraction angles between the two circular polarization components is a function of the magnetic-field strength and the Verdet constant, and permits the observation of the Faraday effect not via polarization rotation in transmission, but via changes in the propagation direction. Deflection measurements do not suffer from n-pi ambiguities and are shown to be another means to map magnetic fields with high axial resolution, or to determine the sign and magnitude of magnetic-field pulses in a single measurement.

pf

DOI [BibTex]


Thumb xl toc image
Circular differential double diffraction in chiral media

Ghosh, A., Fazal, F. M., Fischer, P.

OPTICS LETTERS, 32(13):1836-1838, 2007 (article)

Abstract
In an optically active liquid the diffraction angle depends on the circular polarization state of the incident light beam. We report the observation of circular differential diffraction in an isotropic chiral medium, and we demonstrate that double diffraction is an alternate means to determine the handedness (enantiomeric excess) of a solution. (c) 2007 Optical Society of America.

pf

DOI [BibTex]

DOI [BibTex]

2005


Thumb xl toc image
Nonlinear optical spectroscopy of chiral molecules

Fischer, P., Hache, F.

CHIRALITY, 17(8):421-437, 2005 (article)

Abstract
We review nonlinear optical processes that are specific to chiral molecules in solution and on surfaces. In contrast to conventional natural optical activity phenomena, which depend linearly on the electric field strength of the optical field, we discuss how optical processes that are nonlinear (quadratic, cubic, and quartic) functions of the electromagnetic field strength may probe optically active centers and chiral vibrations. We show that nonlinear techniques open entirely new ways of exploring chirality in chemical and biological systems: The cubic processes give rise to nonlinear circular dichroism and nonlinear optical rotation and make it possible to observe dynamic chiral processes at ultrafast time scales. The quadratic second-harmonic and sum-frequency-generation phenomena and the quartic processes may arise entirely in the electric-dipole approximation and do not require the use of circularly polarized light to detect chirality: They provide surface selectivity and their observables can be relatively much larger than in linear optical activity. These processes also give rise to the generation of light at a new color, and in liquids this frequency conversion only occurs if the solution is optically active. We survey recent chiral nonlinear optical experiments and give examples of their application to problems of biophysical interest. (C) 2005 Wiley-Liss, Inc.

pf

DOI [BibTex]

2005


DOI [BibTex]


Thumb xl toc image
Negative refraction at optical frequencies in nonmagnetic two-component molecular media

Chen, Y., Fischer, P., Wise, F.

PHYSICAL REVIEW LETTERS, 95(6), 2005 (article)

Abstract
There is significant motivation to develop media with negative refractive indices at optical frequencies, but efforts in this direction are hampered by the weakness of the magnetic response at such frequencies. We show theoretically that a nonmagnetic medium with two atomic or molecular constituents can exhibit a negative refractive index. A negative index is possible even when the real parts of both the permittivity and permeability are positive. This surprising result provides a route to isotropic negative-index media at optical frequencies.

pf

DOI [BibTex]

DOI [BibTex]

2002


Thumb xl toc images
Chirality-specific nonlinear spectroscopies in isotropic media

Fischer, P., Albrecht, A.

BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 75(5):1119-1124, 2002, 10th International Conference on Time-Resolved Vibrational Spectroscopy (TRVS 2001), OKAZZAKI, JAPAN, MAY 21-25, 2001 (article)

Abstract
Sum or difference frequency generation (SFG or DFG) in isotropic media is in the electric-dipole approximation only symmetry allowed for optically active systems. The hyperpolarizability giving rise to these three-wave mixing processes features only one isotropic component. It factorizes into two terms, an energy (denominator) factor and a triple product of transition moments. These forbid degenerate SFG, i.e., second harmonic generation, as well as the existence of the linear electrooptic effect (Pockels effect) in isotropic media. This second order response also has no static limit, which leads to particularly strong resonance phenomena that are qualitatively different from those usually seen in the ubiquitous even-wave mixing spectroscopies. In particular, the participation of two (not the usual one) excited states is essential to achieve dramatic resonance enhancement, We report our first efforts to see such resonantly enhanced chirality specific SFG.

pf

DOI [BibTex]

2002


DOI [BibTex]


Thumb xl toc image
The chiral specificity of sum-frequency generation in solutions

Fischer, P., Beckwitt, K., Wise, F., Albrecht, A.

CHEMICAL PHYSICS LETTERS, 352(5-6):463-468, 2002 (article)

Abstract
Sum-frequency generation in isotropic media is in the electric-dipole approximation the only symmetry allowed for chiral systems. We demonstrate that the sum-frequency intensity from an optically active liquid depends quadratically on the difference in concentration of the two enantiomers. The dominant contribution to the signal is found to be due to the chirality specific electric-dipolar three-wave mixing nonlinearity. Selecting the polarization of all fields allows the chiral electric-dipolar contributions to the bulk sum-frequency signal to be discerned from any achiral magnetic-dipolar and electric-quadrupolar contributions. (C) 2002 Published by Elsevier Science B.V.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
On optical rectification in isotropic media

Fischer, P., Albrecht, A.

LASER PHYSICS, 12(8):1177-1181, 2002 (article)

Abstract
Coherent nonlinear optical processes at second-order are only electric-dipole allowed in isotropic media that are optically active. Sum-frequency generation in chiral liquids has recently been observed, and difference-frequency and optical rectification have been predicted to exist in isotropic chiral media. Both Rayleigh-Schrodinger perturbation theory and the density matrix approach are used to discuss the quantum-chemical basis of optical rectification in optically active liquids. For pinene we compute the corresponding orientationally averaged hyperpolarizability, and estimate the light-induced dc electric polarization and the consequent voltage across a measuring capacitor it may give rise to near resonance.

pf

[BibTex]

[BibTex]