Header logo is


2008


no image
Modelling contrast discrimination data suggest both the pedestal effect and stochastic resonance to be caused by the same mechanism

Goris, R., Wagemans, J., Wichmann, F.

Journal of Vision, 8(15):1-21, November 2008 (article)

Abstract
Computational models of spatial vision typically make use of a (rectified) linear filter, a nonlinearity and dominant late noise to account for human contrast discrimination data. Linear–nonlinear cascade models predict an improvement in observers' contrast detection performance when low, subthreshold levels of external noise are added (i.e., stochastic resonance). Here, we address the issue whether a single contrast gain-control model of early spatial vision can account for both the pedestal effect, i.e., the improved detectability of a grating in the presence of a low-contrast masking grating, and stochastic resonance. We measured contrast discrimination performance without noise and in both weak and moderate levels of noise. Making use of a full quantitative description of our data with few parameters combined with comprehensive model selection assessments, we show the pedestal effect to be more reduced in the presence of weak noise than in moderate noise. This reduction rules out independent, additive sources of performance improvement and, together with a simulation study, supports the parsimonious explanation that a single mechanism underlies the pedestal effect and stochastic resonance in contrast perception.

ei

Web DOI [BibTex]


no image
gBoost: A Mathematical Programming Approach to Graph Classification and Regression

Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., Tsuda, K.

Machine Learning, 75(1):69-89, November 2008 (article)

Abstract
Graph mining methods enumerate frequently appearing subgraph patterns, which can be used as features for subsequent classification or regression. However, frequent patterns are not necessarily informative for the given learning problem. We propose a mathematical programming boosting method (gBoost) that progressively collects informative patterns. Compared to AdaBoost, gBoost can build the prediction rule with fewer iterations. To apply the boosting method to graph data, a branch-and-bound pattern search algorithm is developed based on the DFS code tree. The constructed search space is reused in later iterations to minimize the computation time. Our method can learn more efficiently than the simpler method based on frequent substructure mining, because the output labels are used as an extra information source for pruning the search space. Furthermore, by engineering the mathematical program, a wide range of machine learning problems can be solved without modifying the pattern search algorithm.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Machine Learning for Motor Skills in Robotics

Peters, J.

K{\"u}nstliche Intelligenz, 2008(4):41-43, November 2008 (article)

Abstract
Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and the cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the perceptuomotor tasks of future robots. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator and humanoid robotics and usually scaling was only achieved in precisely pre-structured domains. We have investigated the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernels, Regularization and Differential Equations

Steinke, F., Schölkopf, B.

Pattern Recognition, 41(11):3271-3286, November 2008 (article)

Abstract
Many common machine learning methods such as Support Vector Machines or Gaussian process inference make use of positive definite kernels, reproducing kernel Hilbert spaces, Gaussian processes, and regularization operators. In this work these objects are presented in a general, unifying framework, and interrelations are highlighted. With this in mind we then show how linear stochastic differential equation models can be incorporated naturally into the kernel framework. And vice versa, many kernel machines can be interpreted in terms of differential equations. We focus especially on ordinary differential equations, also known as dynamical systems, and it is shown that standard kernel inference algorithms are equivalent to Kalman filter methods based on such models. In order not to cloud qualitative insights with heavy mathematical machinery, we restrict ourselves to finite domains, implying that differential equations are treated via their corresponding finite difference equations.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Mixture Models for Protein Structure Ensembles

Hirsch, M., Habeck, M.

Bioinformatics, 24(19):2184-2192, October 2008 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Structure of the human voltage-dependent anion channel

Bayrhuber, M., Meins, T., Habeck, M., Becker, S., Giller, K., Villinger, S., Vonrhein, C., Griesinger, C., Zweckstetter, M., Zeth, K.

Proceedings of the National Academy of Sciences of the United States of America, 105(40):15370-15375, October 2008 (article)

Abstract
The voltage-dependent anion channel (VDAC), also known as mitochondrial porin, is the most abundant protein in the mitochondrial outer membrane (MOM). VDAC is the channel known to guide the metabolic flux across the MOM and plays a key role in mitochondrially induced apoptosis. Here, we present the 3D structure of human VDAC1, which was solved conjointly by NMR spectroscopy and x-ray crystallography. Human VDAC1 (hVDAC1) adopts a β-barrel architecture composed of 19 β-strands with an α-helix located horizontally midway within the pore. Bioinformatic analysis indicates that this channel architecture is common to all VDAC proteins and is adopted by the general import pore TOM40 of mammals, which is also located in the MOM.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
MRI-Based Attenuation Correction for PET/MRI: A Novel Approach Combining Pattern Recognition and Atlas Registration

Hofmann, M., Steinke, F., Scheel, V., Charpiat, G., Farquhar, J., Aschoff, P., Brady, M., Schölkopf, B., Pichler, B.

Journal of Nuclear Medicine, 49(11):1875-1883, October 2008 (article)

Abstract
For quantitative PET information, correction of tissue photon attenuation is mandatory. Generally in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating radionuclide source, or from the CT scan in a combined PET/CT scanner. In the case of PET/MRI scanners currently under development, insufficient space for the rotating source exists; the attenuation map can be calculated from the MR image instead. This task is challenging because MR intensities correlate with proton densities and tissue-relaxation properties, rather than with attenuation-related mass density. METHODS: We used a combination of local pattern recognition and atlas registration, which captures global variation of anatomy, to predict pseudo-CT images from a given MR image. These pseudo-CT images were then used for attenuation correction, as the process would be performed in a PET/CT scanner. RESULTS: For human brain scans, we show on a database of 17 MR/CT image pairs that our method reliably enables e stimation of a pseudo-CT image from the MR image alone. On additional datasets of MRI/PET/CT triplets of human brain scans, we compare MRI-based attenuation correction with CT-based correction. Our approach enables PET quantification with a mean error of 3.2% for predefined regions of interest, which we found to be clinically not significant. However, our method is not specific to brain imaging, and we show promising initial results on 1 whole-body animal dataset. CONCLUSION: This method allows reliable MRI-based attenuation correction for human brain scans. Further work is necessary to validate the method for whole-body imaging.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Support Vector Machines and Kernels for Computational Biology

Ben-Hur, A., Ong, C., Sonnenburg, S., Schölkopf, B., Rätsch, G.

PLoS Computational Biology, 4(10: e1000173):1-10, October 2008 (article)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Approximations for Binary Gaussian Process Classification

Nickisch, H., Rasmussen, C.

Journal of Machine Learning Research, 9, pages: 2035-2078, October 2008 (article)

Abstract
We provide a comprehensive overview of many recent algorithms for approximate inference in Gaussian process models for probabilistic binary classification. The relationships between several approaches are elucidated theoretically, and the properties of the different algorithms are corroborated by experimental results. We examine both 1) the quality of the predictive distributions and 2) the suitability of the different marginal likelihood approximations for model selection (selecting hyperparameters) and compare to a gold standard based on MCMC. Interestingly, some methods produce good predictive distributions although their marginal likelihood approximations are poor. Strong conclusions are drawn about the methods: The Expectation Propagation algorithm is almost always the method of choice unless the computational budget is very tight. We also extend existing methods in various ways, and provide unifying code implementing all approaches.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Accurate NMR Structures Through Minimization of an Extended Hybrid Energy

Nilges, M., Bernard, A., Bardiaux, B., Malliavin, T., Habeck, M., Rieping, W.

Structure, 16(9):1305-1312, September 2008 (article)

Abstract
The use of generous distance bounds has been the hallmark of NMR structure determination. However, bounds necessitate the estimation of data quality before the calculation, reduce the information content, introduce human bias, and allow for major errors in the structures. Here, we propose a new rapid structure calculation scheme based on Bayesian analysis. The minimization of an extended energy function, including a new type of distance restraint and a term depending on the data quality, results in an estimation of the data quality in addition to coordinates. This allows for the determination of the optimal weight on the experimental information. The resulting structures are of better quality and closer to the X–ray crystal structure of the same molecule. With the new calculation approach, the analysis of discrepancies from the target distances becomes meaningful. The strategy may be useful in other applications—for example, in homology modeling.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Similarity, Kernels, and the Triangle Inequality

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 52(5):297-303, September 2008 (article)

Abstract
Similarity is used as an explanatory construct throughout psychology and multidimensional scaling (MDS) is the most popular way to assess similarity. In MDS, similarity is intimately connected to the idea of a geometric representation of stimuli in a perceptual space. Whilst connecting similarity and closeness of stimuli in a geometric representation may be intuitively plausible, Tversky and Gati [Tversky, A., Gati, I. (1982). Similarity, separability, and the triangle inequality. Psychological Review, 89(2), 123–154] have reported data which are inconsistent with the usual geometric representations that are based on segmental additivity. We show that similarity measures based on Shepard’s universal law of generalization [Shepard, R. N. (1987). Toward a universal law of generalization for psychologica science. Science, 237(4820), 1317–1323] lead to an inner product representation in a reproducing kernel Hilbert space. In such a space stimuli are represented by their similarity to all other stimuli. This representation, based on Shepard’s law, has a natural metric that does not have additive segments whilst still retaining the intuitive notion of connecting similarity and distance between stimuli. Furthermore, this representation has the psychologically appealing property that the distance between stimuli is bounded.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Comparison of Pattern Recognition Methods in Classifying High-resolution BOLD Signals Obtained at High Magnetic Field in Monkeys

Ku, S., Gretton, A., Macke, J., Logothetis, N.

Magnetic Resonance Imaging, 26(7):1007-1014, September 2008 (article)

Abstract
Pattern recognition methods have shown that functional magnetic resonance imaging (fMRI) data can reveal significant information about brain activity. For example, in the debate of how object categories are represented in the brain, multivariate analysis has been used to provide evidence of a distributed encoding scheme [Science 293:5539 (2001) 2425–2430]. Many follow-up studies have employed different methods to analyze human fMRI data with varying degrees of success [Nature reviews 7:7 (2006) 523–534]. In this study, we compare four popular pattern recognition methods: correlation analysis, support-vector machines (SVM), linear discriminant analysis (LDA) and Gaussian naïve Bayes (GNB), using data collected at high field (7 Tesla) with higher resolution than usual fMRI studies. We investigate prediction performance on single trials and for averages across varying numbers of stimulus presentations. The performance of the various algorithms depends on the nature of the brain activity being categorized: for several tasks, many of the methods work well, whereas for others, no method performs above chance level. An important factor in overall classification performance is careful preprocessing of the data, including dimensionality reduction, voxel selection and outlier elimination.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Single-shot Measurement of the Energy of Product States in a Translation Invariant Spin Chain Can Replace Any Quantum Computation

Janzing, D., Wocjan, P., Zhang, S.

New Journal of Physics, 10(093004):1-18, September 2008 (article)

Abstract
In measurement-based quantum computation, quantum algorithms are implemented via sequences of measurements. We describe a translationally invariant finite-range interaction on a one-dimensional qudit chain and prove that a single-shot measurement of the energy of an appropriate computational basis state with respect to this Hamiltonian provides the output of any quantum circuit. The required measurement accuracy scales inverse polynomially with the size of the simulated quantum circuit. This shows that the implementation of energy measurements on generic qudit chains is as hard as the realization of quantum computation. Here, a ‘measurement‘ is any procedure that samples from the spectral measurement induced by the observable and the state under consideration. As opposed to measurement-based quantum computation, the post-measurement state is irrelevant.

ei

PDF DOI [BibTex]


no image
Voluntary Brain Regulation and Communication with ECoG-Signals

Hinterberger, T., Widmann, G., Lal, T., Hill, J., Tangermann, M., Rosenstiel, W., Schölkopf, B., Elger, C., Birbaumer, N.

Epilepsy and Behavior, 13(2):300-306, August 2008 (article)

Abstract
Brain–computer interfaces (BCIs) can be used for communication in writing without muscular activity or for learning to control seizures by voluntary regulation of brain signals such as the electroencephalogram (EEG). Three of five patients with epilepsy were able to spell their names with electrocorticogram (ECoG) signals derived from motor-related areas within only one or two training sessions. Imagery of finger or tongue movements was classified with support-vector classification of autoregressive coefficients derived from the ECoG signals. After training of the classifier, binary classification responses were used to select letters from a computer-generated menu. Offline analysis showed increased theta activity in the unsuccessful patients, whereas the successful patients exhibited dominant sensorimotor rhythms that they could control. The high spatial resolution and increased signal-to-noise ratio in ECoG signals, combined with short training periods, may offer an alternative for communication in complete paralysis, locked-in syndrome, and motor restoration.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Multi-class Common Spatial Pattern and Information Theoretic Feature Extraction

Grosse-Wentrup, M., Buss, M.

IEEE Transactions on Biomedical Engineering, 55(8):1991-2000, August 2008 (article)

Abstract
We address two shortcomings of the common spatial patterns (CSP) algorithm for spatial filtering in the context of brain--computer interfaces (BCIs) based on electroencephalography/magnetoencephalography (EEG/MEG): First, the question of optimality of CSP in terms of the minimal achievable classification error remains unsolved. Second, CSP has been initially proposed for two-class paradigms. Extensions to multiclass paradigms have been suggested, but are based on heuristics. We address these shortcomings in the framework of information theoretic feature extraction (ITFE). We show that for two-class paradigms, CSP maximizes an approximation of mutual information of extracted EEG/MEG components and class labels. This establishes a link between CSP and the minimal classification error. For multiclass paradigms, we point out that CSP by joint approximate diagonalization (JAD) is equivalent to independent component analysis (ICA), and provide a method to choose those independent components (ICs) that approximately maximize mutual information of ICs and class labels. This eliminates the need for heuristics in multiclass CSP, and allows incorporating prior class probabilities. The proposed method is applied to the dataset IIIa of the third BCI competition, and is shown to increase the mean classification accuracy by 23.4% in comparison to multiclass CSP.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
At-TAX: A Whole Genome Tiling Array Resource for Developmental Expression Analysis and Transcript Identification in Arabidopsis thaliana

Laubinger, S., Zeller, G., Henz, S., Sachsenberg, T., Widmer, C., Naouar, N., Vuylsteke, M., Schölkopf, B., Rätsch, G., Weigel, D.

Genome Biology, 9(7: R112):1-16, July 2008 (article)

Abstract
Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays. Here, we describe a comprehensive expression atlas, Arabidopsis thaliana Tiling Array Express (At-TAX), which is based on whole-genome tiling arrays. We demonstrate that tiling arrays are accurate tools for gene expression analysis and identified more than 1,000 unannotated transcribed regions. Visualizations of gene expression estimates, transcribed regions, and tiling probe measurements are accessible online at the At-TAX homepage.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Graphical Analysis of NMR Structural Quality and Interactive Contact Map of NOE Assignments in ARIA

Bardiaux, B., Bernard, A., Rieping, W., Habeck, M., Malliavin, T., Nilges, M.

BMC Structural Biology, 8(30):1-5, June 2008 (article)

Abstract
BACKGROUND: The Ambiguous Restraints for Iterative Assignment (ARIA) approach is widely used for NMR structure determination. It is based on simultaneously calculating structures and assigning NOE through an iterative protocol. The final solution consists of a set of conformers and a list of most probable assignments for the input NOE peak list. RESULTS: ARIA was extended with a series of graphical tools to facilitate a detailed analysis of the intermediate and final results of the ARIA protocol. These additional features provide (i) an interactive contact map, serving as a tool for the analysis of assignments, and (ii) graphical representations of structure quality scores and restraint statistics. The interactive contact map between residues can be clicked to obtain information about the restraints and their contributions. Profiles of quality scores are plotted along the protein sequence, and contact maps provide information of the agreement with the data on a residue pair level. CONCLUSIONS: The g raphical tools and outputs described here significantly extend the validation and analysis possibilities of NOE assignments given by ARIA as well as the analysis of the quality of the final structure ensemble. These tools are included in the latest version of ARIA, which is available at http://aria.pasteur.fr. The Web site also contains an installation guide, a user manual and example calculations.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Kernel Methods in Machine Learning

Hofmann, T., Schölkopf, B., Smola, A.

Annals of Statistics, 36(3):1171-1220, June 2008 (article)

Abstract
We review machine learning methods employing positive definite kernels. These methods formulate learning and estimation problems in a reproducing kernel Hilbert space (RKHS) of functions defined on the data domain, expanded in terms of a kernel. Working in linear spaces of function has the benefit of facilitating the construction and analysis of learning algorithms while at the same time allowing large classes of functions. The latter include nonlinear functions as well as functions defined on nonvectorial data.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Cross-validation Optimization for Large Scale Structured Classification Kernel Methods

Seeger, M.

Journal of Machine Learning Research, 9, pages: 1147-1178, June 2008 (article)

Abstract
We propose a highly efficient framework for penalized likelihood kernel methods applied to multi-class models with a large, structured set of classes. As opposed to many previous approaches which try to decompose the fitting problem into many smaller ones, we focus on a Newton optimization of the complete model, making use of model structure and linear conjugate gradients in order to approximate Newton search directions. Crucially, our learning method is based entirely on matrix-vector multiplication primitives with the kernel matrices and their derivatives, allowing straightforward specialization to new kernels, and focusing code optimization efforts to these primitives only. Kernel parameters are learned automatically, by maximizing the cross-validation log likelihood in a gradient-based way, and predictive probabilities are estimated. We demonstrate our approach on large scale text classification tasks with hierarchical structure on thousands of classes, achieving state-of-the-art results in an order of magnitude less time than previous work.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Reinforcement Learning of Motor Skills with Policy Gradients

Peters, J., Schaal, S.

Neural Networks, 21(4):682-697, May 2008 (article)

ei

PDF Web DOI [BibTex]


no image
Information Consistency of Nonparametric Gaussian Process Methods

Seeger, MW., Kakade, SM., Foster, DP.

IEEE Transactions on Information Theory, 54(5):2376-2382, May 2008 (article)

Abstract
Abstract—Bayesian nonparametric models are widely and successfully used for statistical prediction. While posterior consistency properties are well studied in quite general settings, results have been proved using abstract concepts such as metric entropy, and they come with subtle conditions which are hard to validate and not intuitive when applied to concrete models. Furthermore, convergence rates are difficult to obtain. By focussing on the concept of information consistency for Bayesian Gaussian process (GP)models, consistency results and convergence rates are obtained via a regret bound on cumulative log loss. These results depend strongly on the covariance function of the prior process, thereby giving a novel interpretation to penalization with reproducing kernel Hilbert space norms and to commonly used covariance function classes and their parameters. The proof of the main result employs elementary convexity arguments only. A theorem of Widom is used in order to obtain precise convergence rates for several covariance functions widely used in practice.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Relating the Thermodynamic Arrow of Time to the Causal Arrow

Allahverdyan, A., Janzing, D.

Journal of Statistical Mechanics, 2008(P04001):1-21, April 2008 (article)

Abstract
Consider a Hamiltonian system that consists of a slow subsystem S and a fast subsystem F. The autonomous dynamics of S is driven by an effective Hamiltonian, but its thermodynamics is unexpected. We show that a well-defined thermodynamic arrow of time (second law) emerges for S whenever there is a well-defined causal arrow from S to F and the back-action is negligible. This is because the back-action of F on S is described by a non-globally Hamiltonian Born–Oppenheimer term that violates the Liouville theorem, and makes the second law inapplicable to S. If S and F are mixing, under the causal arrow condition they are described by microcanonical distributions P(S) and P(S|F). Their structure supports a causal inference principle proposed recently in machine learning.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Generalization and Similarity in Exemplar Models of Categorization: Insights from Machine Learning

Jäkel, F., Schölkopf, B., Wichmann, F.

Psychonomic Bulletin and Review, 15(2):256-271, April 2008 (article)

Abstract
Exemplar theories of categorization depend on similarity for explaining subjects’ ability to generalize to new stimuli. A major criticism of exemplar theories concerns their lack of abstraction mechanisms and thus, seemingly, generalization ability. Here, we use insights from machine learning to demonstrate that exemplar models can actually generalize very well. Kernel methods in machine learning are akin to exemplar models and very successful in real-world applications. Their generalization performance depends crucially on the chosen similaritymeasure. While similarity plays an important role in describing generalization behavior it is not the only factor that controls generalization performance. In machine learning, kernel methods are often combined with regularization techniques to ensure good generalization. These same techniques are easily incorporated in exemplar models. We show that the Generalized Context Model (Nosofsky, 1986) and ALCOVE (Kruschke, 1992) are closely related to a statistical model called kernel logistic regression. We argue that generalization is central to the enterprise of understanding categorization behavior and suggest how insights from machine learning can offer some guidance. Keywords: kernel, similarity, regularization, generalization, categorization.

ei

PDF Web DOI [BibTex]


no image
Manifold-valued Thin-plate Splines with Applications in Computer Graphics

Steinke, F., Hein, M., Peters, J., Schölkopf, B.

Computer Graphics Forum, 27(2):437-448, April 2008 (article)

Abstract
We present a generalization of thin-plate splines for interpolation and approximation of manifold-valued data, and demonstrate its usefulness in computer graphics with several applications from different fields. The cornerstone of our theoretical framework is an energy functional for mappings between two Riemannian manifolds which is independent of parametrization and respects the geometry of both manifolds. If the manifolds are Euclidean, the energy functional reduces to the classical thin-plate spline energy. We show how the resulting optimization problems can be solved efficiently in many cases. Our example applications range from orientation interpolation and motion planning in animation over geometric modelling tasks to color interpolation.

ei

PDF AVI Web DOI [BibTex]


no image
The Metric Nearness Problem

Brickell, J., Dhillon, I., Sra, S., Tropp, J.

SIAM Journal on Matrix Analysis and Applications, 30(1):375-396, April 2008 (article)

Abstract
Metric nearness refers to the problem of optimally restoring metric properties to distance measurements that happen to be nonmetric due to measurement errors or otherwise. Metric data can be important in various settings, for example, in clustering, classification, metric-based indexing, query processing, and graph theoretic approximation algorithms. This paper formulates and solves the metric nearness problem: Given a set of pairwise dissimilarities, find a “nearest” set of distances that satisfy the properties of a metric—principally the triangle inequality. For solving this problem, the paper develops efficient triangle fixing algorithms that are based on an iterative projection method. An intriguing aspect of the metric nearness problem is that a special case turns out to be equivalent to the all pairs shortest paths problem. The paper exploits this equivalence and develops a new algorithm for the latter problem using a primal-dual method. Applications to graph clustering are provided as an illustratio n. We include experiments that demonstrate the computational superiority of triangle fixing over general purpose convex programming software. Finally, we conclude by suggesting various useful extensions and generalizations to metric nearness.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Bayesian Inference and Optimal Design for the Sparse Linear Model

Seeger, MW.

Journal of Machine Learning Research, 9, pages: 759-813, April 2008 (article)

Abstract
The linear model with sparsity-favouring prior on the coefficients has important applications in many different domains. In machine learning, most methods to date search for maximum a posteriori sparse solutions and neglect to represent posterior uncertainties. In this paper, we address problems of Bayesian optimal design (or experiment planning), for which accurate estimates of uncertainty are essential. To this end, we employ expectation propagation approximate inference for the linear model with Laplace prior, giving new insight into numerical stability properties and proposing a robust algorithm. We also show how to estimate model hyperparameters by empirical Bayesian maximisation of the marginal likelihood, and propose ideas in order to scale up the method to very large underdetermined problems. We demonstrate the versatility of our framework on the application of gene regulatory network identification from micro-array expression data, where both the Laplace prior and the active experimental design approach are shown to result in significant improvements. We also address the problem of sparse coding of natural images, and show how our framework can be used for compressive sensing tasks.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Consistency of Spectral Clustering

von Luxburg, U., Belkin, M., Bousquet, O.

Annals of Statistics, 36(2):555-586, April 2008 (article)

Abstract
Consistency is a key property of statistical algorithms when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of the popular family of spectral clustering algorithms, which clusters the data with the help of eigenvectors of graph Laplacian matrices. We develop new methods to establish that for increasing sample size, those eigenvectors converge to the eigenvectors of certain limit operators. As a result we can prove that one of the two major classes of spectral clustering (normalized clustering) converges under very general conditions, while the other (unnormalized clustering) is only consistent under strong additional assumptions, which are not always satisfied in real data. We conclude that our analysis provides strong evidence for the superiority of normalized spectral clustering.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Plant Classification from Bat-Like Echolocation Signals

Yovel, Y., Franz, MO., Stilz, P., Schnitzler, H-U.

PLoS Computational Biology, 4(3, e1000032):1-13, March 2008 (article)

Abstract
Classification of plants according to their echoes is an elementary component of bat behavior that plays an important role in spatial orientation and food acquisition. Vegetation echoes are, however, highly complex stochastic signals: from an acoustical point of view, a plant can be thought of as a three-dimensional array of leaves reflecting the emitted bat call. The received echo is therefore a superposition of many reflections. In this work we suggest that the classification of these echoes might not be such a troublesome routine for bats as formerly thought. We present a rather simple approach to classifying signals from a large database of plant echoes that were created by ensonifying plants with a frequency-modulated bat-like ultrasonic pulse. Our algorithm uses the spectrogram of a single echo from which it only uses features that are undoubtedly accessible to bats. We used a standard machine learning algorithm (SVM) to automatically extract suitable linear combinations of time and frequency cues from the spectrograms such that classification with high accuracy is enabled. This demonstrates that ultrasonic echoes are highly informative about the species membership of an ensonified plant, and that this information can be extracted with rather simple, biologically plausible analysis. Thus, our findings provide a new explanatory basis for the poorly understood observed abilities of bats in classifying vegetation and other complex objects.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Causal Reasoning by Evaluating the Complexity of Conditional Densities with Kernel Methods

Sun, X., Janzing, D., Schölkopf, B.

Neurocomputing, 71(7-9):1248-1256, March 2008 (article)

Abstract
We propose a method to quantify the complexity of conditional probability measures by a Hilbert space seminorm of the logarithm of its density. The concept of reproducing kernel Hilbert spaces (RKHSs) is a flexible tool to define such a seminorm by choosing an appropriate kernel. We present several examples with artificial data sets where our kernel-based complexity measure is consistent with our intuitive understanding of complexity of densities. The intention behind the complexity measure is to provide a new approach to inferring causal directions. The idea is that the factorization of the joint probability measure P(effect, cause) into P(effect|cause)P(cause) leads typically to "simpler" and "smoother" terms than the factorization into P(cause|effect)P(effect). Since the conventional constraint-based approach of causal discovery is not able to determine the causal direction between only two variables, our inference principle can in particular be useful when combined with other existing methods. We provide several simple examples with real-world data where the true causal directions indeed lead to simpler (conditional) densities.

ei

Web DOI [BibTex]


no image
Natural Actor-Critic

Peters, J., Schaal, S.

Neurocomputing, 71(7-9):1180-1190, March 2008 (article)

Abstract
In this paper, we suggest a novel reinforcement learning architecture, the Natural Actor-Critic. The actor updates are achieved using stochastic policy gradients em- ploying Amari’s natural gradient approach, while the critic obtains both the natural policy gradient and additional parameters of a value function simultaneously by lin- ear regression. We show that actor improvements with natural policy gradients are particularly appealing as these are independent of coordinate frame of the chosen policy representation, and can be estimated more efficiently than regular policy gra- dients. The critic makes use of a special basis function parameterization motivated by the policy-gradient compatible function approximation. We show that several well-known reinforcement learning methods such as the original Actor-Critic and Bradtke’s Linear Quadratic Q-Learning are in fact Natural Actor-Critic algorithms. Empirical evaluations illustrate the effectiveness of our techniques in comparison to previous methods, and also demonstrate their applicability for learning control on an anthropomorphic robot arm.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Inferring Spike Trains From Local Field Potentials

Rasch, M., Gretton, A., Murayama, Y., Maass, W., Logothetis, N.

Journal of Neurophysiology, 99(3):1461-1476, March 2008 (article)

Abstract
We investigated whether it is possible to infer spike trains solely on the basis of the underlying local field potentials (LFPs). Using support vector machines and linear regression models, we found that in the primary visual cortex (V1) of monkeys, spikes can indeed be inferred from LFPs, at least with moderate success. Although there is a considerable degree of variation across electrodes, the low-frequency structure in spike trains (in the 100-ms range) can be inferred with reasonable accuracy, whereas exact spike positions are not reliably predicted. Two kinds of features of the LFP are exploited for prediction: the frequency power of bands in the high gamma-range (40–90 Hz) and information contained in lowfrequency oscillations ( 10 Hz), where both phase and power modulations are informative. Information analysis revealed that both features code (mainly) independent aspects of the spike-to-LFP relationship, with the low-frequency LFP phase coding for temporally clustered spiking activity. Although both features and prediction quality are similar during seminatural movie stimuli and spontaneous activity, prediction performance during spontaneous activity degrades much more slowly with increasing electrode distance. The general trend of data obtained with anesthetized animals is qualitatively mirrored in that of a more limited data set recorded in V1 of non-anesthetized monkeys. In contrast to the cortical field potentials, thalamic LFPs (e.g., LFPs derived from recordings in the dorsal lateral geniculate nucleus) hold no useful information for predicting spiking activity.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
ISD: A Software Package for Bayesian NMR Structure Calculation

Rieping, W., Nilges, M., Habeck, M.

Bioinformatics, 24(8):1104-1105, February 2008 (article)

Abstract
SUMMARY: The conventional approach to calculating biomolecular structures from nuclear magnetic resonance (NMR) data is often viewed as subjective due to its dependence on rules of thumb for deriving geometric constraints and suitable values for theory parameters from noisy experimental data. As a result, it can be difficult to judge the precision of an NMR structure in an objective manner. The Inferential Structure Determination (ISD) framework, which has been introduced recently, addresses this problem by using Bayesian inference to derive a probability distribution that represents both the unknown structure and its uncertainty. It also determines additional unknowns, such as theory parameters, that normally need be chosen empirically. Here we give an overview of the ISD software package, which implements this methodology. AVAILABILITY: The program is available at http://www.bioc.cam.ac.uk/isd

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Probabilistic Structure Calculation

Nilges, M., Habeck, M., Rieping, W.

Comptes Rendus Chimie, 11(4-5):356-369, February 2008 (article)

Abstract
Molecular structures are usually calculated from experimental data with some method of energy minimisation or non-linear optimisation. Key aims of a structure calculation are to estimate the coordinate uncertainty, and to provide a meaningful measure of the quality of the fit to the data. We discuss approaches to optimally combine prior information and experimental data and the connection to probability theory. We analyse the appropriate statistics for NOEs and NOE-derived distances, and the related question of restraint potentials. Finally, we will discuss approaches to determine the appropriate weight on the experimental evidence and to obtain in this way an estimate of the data quality from the structure calculation. Whereas objective estimates of coordinates and their uncertainties can only be obtained by a full Bayesian treatment of the problem, standard structure calculation methods continue to play an important role. To obtain the full benefit of these methods, they should be founded on a rigorous Baye sian analysis.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Fast Projection-based Methods for the Least Squares Nonnegative Matrix Approximation Problem

Kim, D., Sra, S., Dhillon, I.

Statistical Analysis and Data Mining, 1(1):38-51, February 2008 (article)

Abstract
Nonnegative matrix approximation (NNMA) is a popular matrix decomposition technique that has proven to be useful across a diverse variety of fields with applications ranging from document analysis and image processing to bioinformatics and signal processing. Over the years, several algorithms for NNMA have been proposed, e.g. Lee and Seung‘s multiplicative updates, alternating least squares (ALS), and gradient descent-based procedures. However, most of these procedures suffer from either slow convergence, numerical instability, or at worst, serious theoretical drawbacks. In this paper, we develop a new and improved algorithmic framework for the least-squares NNMA problem, which is not only theoretically well-founded, but also overcomes many deficiencies of other methods. Our framework readily admits powerful optimization techniques and as concrete realizations we present implementations based on the Newton, BFGS and conjugate gradient methods. Our algorithms provide numerical resu lts supe rior to both Lee and Seung‘s method as well as to the alternating least squares heuristic, which was reported to work well in some situations but has no theoretical guarantees[1]. Our approach extends naturally to include regularization and box-constraints without sacrificing convergence guarantees. We present experimental results on both synthetic and real-world datasets that demonstrate the superiority of our methods, both in terms of better approximations as well as computational efficiency.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Unifying Probabilistic Framework for Analyzing Residual Dipolar Couplings

Habeck, M., Nilges, M., Rieping, W.

Journal of Biomolecular NMR, 40(2):135-144, February 2008 (article)

Abstract
Residual dipolar couplings provide complementary information to the nuclear Overhauser effect measurements that are traditionally used in biomolecular structure determination by NMR. In a de novo structure determination, however, lack of knowledge about the degree and orientation of molecular alignment complicates the analysis of dipolar coupling data. We present a probabilistic framework for analyzing residual dipolar couplings and demonstrate that it is possible to estimate the atomic coordinates, the complete molecular alignment tensor, and the error of the couplings simultaneously. As a by-product, we also obtain estimates of the uncertainty in the coordinates and the alignment tensor. We show that our approach encompasses existing methods for determining the alignment tensor as special cases, including least squares estimation, histogram fitting, and elimination of an explicit alignment tensor in the restraint energy.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Contour-propagation Algorithms for Semi-automated Reconstruction of Neural Processes

Macke, J., Maack, N., Gupta, R., Denk, W., Schölkopf, B., Borst, A.

Journal of Neuroscience Methods, 167(2):349-357, January 2008 (article)

Abstract
A new technique, ”Serial Block Face Scanning Electron Microscopy” (SBFSEM), allows for automatic sectioning and imaging of biological tissue with a scanning electron microscope. Image stacks generated with this technology have a resolution sufficient to distinguish different cellular compartments, including synaptic structures, which should make it possible to obtain detailed anatomical knowledge of complete neuronal circuits. Such an image stack contains several thousands of images and is recorded with a minimal voxel size of 10-20nm in the x and y- and 30nm in z-direction. Consequently, a tissue block of 1mm3 (the approximate volume of the Calliphora vicina brain) will produce several hundred terabytes of data. Therefore, highly automated 3D reconstruction algorithms are needed. As a first step in this direction we have developed semiautomated segmentation algorithms for a precise contour tracing of cell membranes. These algorithms were embedded into an easy-to-operate user interface, which allows direct 3D observation of the extracted objects during the segmentation of image stacks. Compared to purely manual tracing, processing time is greatly accelerated.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Quantum-Statistical-Mechanical Extension of Gaussian Mixture Model

Tanaka, K., Tsuda, K.

Journal of Physics: Conference Series, 95(012023):1-9, January 2008 (article)

Abstract
We propose an extension of Gaussian mixture models in the statistical-mechanical point of view. The conventional Gaussian mixture models are formulated to divide all points in given data to some kinds of classes. We introduce some quantum states constructed by superposing conventional classes in linear combinations. Our extension can provide a new algorithm in classifications of data by means of linear response formulas in the statistical mechanics.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Learning to control in operational space

Peters, J., Schaal, S.

International Journal of Robotics Research, 27, pages: 197-212, 2008, clmc (article)

Abstract
One of the most general frameworks for phrasing control problems for complex, redundant robots is operational space control. However, while this framework is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in com- plex robots, e.g., humanoid robots. In this paper, we suggest a learning approach for opertional space control as a direct inverse model learning problem. A first important insight for this paper is that a physically cor- rect solution to the inverse problem with redundant degrees-of-freedom does exist when learning of the inverse map is performed in a suitable piecewise linear way. The second crucial component for our work is based on the insight that many operational space controllers can be understood in terms of a constrained optimal control problem. The cost function as- sociated with this optimal control problem allows us to formulate a learn- ing algorithm that automatically synthesizes a globally consistent desired resolution of redundancy while learning the operational space controller. From the machine learning point of view, this learning problem corre- sponds to a reinforcement learning problem that maximizes an immediate reward. We employ an expectation-maximization policy search algorithm in order to solve this problem. Evaluations on a three degrees of freedom robot arm are used to illustrate the suggested approach. The applica- tion to a physically realistic simulator of the anthropomorphic SARCOS Master arm demonstrates feasibility for complex high degree-of-freedom robots. We also show that the proposed method works in the setting of learning resolved motion rate control on real, physical Mitsubishi PA-10 medical robotics arm.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl toc image
Voltage-Controllable Magnetic Composite Based on Multifunctional Polyethylene Microparticles

Ghosh, A., Sheridon, N. K., Fischer, P.

SMALL, 4(11):1956-1958, 2008 (article)

pf

DOI [BibTex]


no image
Frequency analysis with coupled nonlinear oscillators

Buchli, J., Righetti, L., Ijspeert, A.

Physica D: Nonlinear Phenomena, 237(13):1705-1718, August 2008 (article)

Abstract
We present a method to obtain the frequency spectrum of a signal with a nonlinear dynamical system. The dynamical system is composed of a pool of adaptive frequency oscillators with negative mean-field coupling. For the frequency analysis, the synchronization and adaptation properties of the component oscillators are exploited. The frequency spectrum of the signal is reflected in the statistics of the intrinsic frequencies of the oscillators. The frequency analysis is completely embedded in the dynamics of the system. Thus, no pre-processing or additional parameters, such as time windows, are needed. Representative results of the numerical integration of the system are presented. It is shown, that the oscillators tune to the correct frequencies for both discrete and continuous spectra. Due to its dynamic nature the system is also capable to track non-stationary spectra. Further, we show that the system can be modeled in a probabilistic manner by means of a nonlinear Fokker–Planck equation. The probabilistic treatment is in good agreement with the numerical results, and provides a useful tool to understand the underlying mechanisms leading to convergence.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2004


no image
On the representation, learning and transfer of spatio-temporal movement characteristics

Ilg, W., Bakir, GH., Mezger, J., Giese, M.

International Journal of Humanoid Robotics, 1(4):613-636, December 2004 (article)

ei

[BibTex]

2004


[BibTex]


no image
Insect-inspired estimation of egomotion

Franz, MO., Chahl, JS., Krapp, HG.

Neural Computation, 16(11):2245-2260, November 2004 (article)

Abstract
Tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during egomotion. In this study, we examine whether a simplified linear model based on the organization principles in tangential neurons can be used to estimate egomotion from the optic flow. We present a theory for the construction of an estimator consisting of a linear combination of optic flow vectors that incorporates prior knowledge both about the distance distribution of the environment, and about the noise and egomotion statistics of the sensor. The estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates are of reasonable quality, albeit less reliable.

ei

PDF PostScript Web DOI [BibTex]

PDF PostScript Web DOI [BibTex]


no image
Efficient face detection by a cascaded support-vector machine expansion

Romdhani, S., Torr, P., Schölkopf, B., Blake, A.

Proceedings of The Royal Society of London A, 460(2501):3283-3297, A, November 2004 (article)

Abstract
We describe a fast system for the detection and localization of human faces in images using a nonlinear ‘support-vector machine‘. We approximate the decision surface in terms of a reduced set of expansion vectors and propose a cascaded evaluation which has the property that the full support-vector expansion is only evaluated on the face-like parts of the image, while the largest part of typical images is classified using a single expansion vector (a simpler and more efficient classifier). As a result, only three reduced-set vectors are used, on average, to classify an image patch. Hence, the cascaded evaluation, presented in this paper, offers a thirtyfold speed-up over an evaluation using the full set of reduced-set vectors, which is itself already thirty times faster than classification using all the support vectors.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning kernels from biological networks by maximizing entropy

Tsuda, K., Noble, W.

Bioinformatics, 20(Suppl. 1):i326-i333, August 2004 (article)

Abstract
Motivation: The diffusion kernel is a general method for computing pairwise distances among all nodes in a graph, based on the sum of weighted paths between each pair of nodes. This technique has been used successfully, in conjunction with kernel-based learning methods, to draw inferences from several types of biological networks. Results: We show that computing the diffusion kernel is equivalent to maximizing the von Neumann entropy, subject to a global constraint on the sum of the Euclidean distances between nodes. This global constraint allows for high variance in the pairwise distances. Accordingly, we propose an alternative, locally constrained diffusion kernel, and we demonstrate that the resulting kernel allows for more accurate support vector machine prediction of protein functional classifications from metabolic and protein–protein interaction networks.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Masking effect produced by Mach bands on the detection of narrow bars of random polarity

Henning, GB., Hoddinott, KT., Wilson-Smith, ZJ., Hill, NJ.

Journal of the Optical Society of America, 21(8):1379-1387, A, August 2004 (article)

ei

[BibTex]

[BibTex]


no image
Support Vector Channel Selection in BCI

Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.

IEEE Transactions on Biomedical Engineering, 51(6):1003-1010, June 2004 (article)

Abstract
Designing a Brain Computer Interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying EEG signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination and Zero-Norm Optimization which are based on the training of Support Vector Machines (SVM). These algorithms can provide more accurate solutions than standard filter methods for feature selection. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.

ei

DOI [BibTex]

DOI [BibTex]


no image
Distance-Based Classification with Lipschitz Functions

von Luxburg, U., Bousquet, O.

Journal of Machine Learning Research, 5, pages: 669-695, June 2004 (article)

Abstract
The goal of this article is to develop a framework for large margin classification in metric spaces. We want to find a generalization of linear decision functions for metric spaces and define a corresponding notion of margin such that the decision function separates the training points with a large margin. It will turn out that using Lipschitz functions as decision functions, the inverse of the Lipschitz constant can be interpreted as the size of a margin. In order to construct a clean mathematical setup we isometrically embed the given metric space into a Banach space and the space of Lipschitz functions into its dual space. To analyze the resulting algorithm, we prove several representer theorems. They state that there always exist solutions of the Lipschitz classifier which can be expressed in terms of distance functions to training points. We provide generalization bounds for Lipschitz classifiers in terms of the Rademacher complexities of some Lipschitz function classes. The generality of our approach can be seen from the fact that several well-known algorithms are special cases of the Lipschitz classifier, among them the support vector machine, the linear programming machine, and the 1-nearest neighbor classifier.

ei

PDF PostScript PDF [BibTex]

PDF PostScript PDF [BibTex]


no image
cDNA-Microarray Technology in Cartilage Research - Functional Genomics of Osteoarthritis [in German]

Aigner, T., Finger, F., Zien, A., Bartnik, E.

Zeitschrift f{\"u}r Orthop{\"a}die und ihre Grenzgebiete, 142(2):241-247, April 2004 (article)

Abstract
Functional genomics represents a new challenging approach in order to analyze complex diseases such as osteoarthritis on a molecular level. The characterization of the molecular changes of the cartilage cells, the chondrocytes, enables a better understanding of the pathomechanisms of the disease. In particular, the identification and characterization of new target molecules for therapeutic intervention is of interest. Also, potential molecular markers for diagnosis and monitoring of osteoarthritis contribute to a more appropriate patient management. The DNA-microarray technology complements (but does not replace) biochemical and biological research in new disease-relevant genes. Large-scale functional genomics will identify molecular networks such as yet identified players in the anabolic-catabolic balance of articular cartilage as well as disease-relevant intracellular signaling cascades so far rather unknown in articular chondrocytes. However, at the moment it is also important to recognize the limitations of the microarray technology in order to avoid over-interpretation of the results. This might lead to misleading results and prevent to a significant extent a proper use of the potential of this technology in the field of osteoarthritis.

ei

[BibTex]

[BibTex]


no image
A Compression Approach to Support Vector Model Selection

von Luxburg, U., Bousquet, O., Schölkopf, B.

Journal of Machine Learning Research, 5, pages: 293-323, April 2004 (article)

Abstract
In this paper we investigate connections between statistical learning theory and data compression on the basis of support vector machine (SVM) model selection. Inspired by several generalization bounds we construct "compression coefficients" for SVMs which measure the amount by which the training labels can be compressed by a code built from the separating hyperplane. The main idea is to relate the coding precision to geometrical concepts such as the width of the margin or the shape of the data in the feature space. The so derived compression coefficients combine well known quantities such as the radius-margin term R^2/rho^2, the eigenvalues of the kernel matrix, and the number of support vectors. To test whether they are useful in practice we ran model selection experiments on benchmark data sets. As a result we found that compression coefficients can fairly accurately predict the parameters for which the test error is minimized.

ei

PDF [BibTex]

PDF [BibTex]


no image
Experimentally optimal v in support vector regression for different noise models and parameter settings

Chalimourda, A., Schölkopf, B., Smola, A.

Neural Networks, 17(1):127-141, January 2004 (article)

Abstract
In Support Vector (SV) regression, a parameter ν controls the number of Support Vectors and the number of points that come to lie outside of the so-called var epsilon-insensitive tube. For various noise models and SV parameter settings, we experimentally determine the values of ν that lead to the lowest generalization error. We find good agreement with the values that had previously been predicted by a theoretical argument based on the asymptotic efficiency of a simplified model of SV regression. As a side effect of the experiments, valuable information about the generalization behavior of the remaining SVM parameters and their dependencies is gained. The experimental findings are valid even for complex ‘real-world’ data sets. Based on our results on the role of the ν-SVM parameters, we discuss various model selection methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]