Header logo is


2011


Thumb xl toc image
Quantum-Cascade Laser-Based Vibrational Circular Dichroism

Luedeke, S., Pfeifer, M., Fischer, P.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 133(15):5704-5707, 2011 (article)

Abstract
Vibrational circular dichroism (VCD) spectra were recorded with a tunable external-cavity quantum-cascade laser (QCL). In comparison with standard thermal light sources in the IR, QCLs provide orders of magnitude more power and are therefore promising for VCD studies in strongly absorbing solvents. The brightness of this novel light source is demonstrated with VCD and IR absorption measurements of a number of compounds, including proline in water.

pf

DOI [BibTex]

2011


DOI [BibTex]


Thumb xl toc image
Actively coupled cavity ringdown spectroscopy with low-power broadband sources

Petermann, C., Fischer, P.

OPTICS EXPRESS, 19(11):10164-10173, 2011 (article)

Abstract
We demonstrate a coupling scheme for cavity enhanced absorption spectroscopy that makes use of an intracavity acousto-optical modulator to actively switch light into (and out of) a resonator. This allows cavity ringdown spectroscopy (CRDS) to be implemented with broadband nonlaser light sources with spectral power densities of less than 30 mu W/nm. Although the acousto-optical element reduces the ultimate detection limit by introducing additional losses, it permits absorptivities to be measured with a high dynamic range, especially in lossy environments. Absorption measurements for the forbidden transition of gaseous oxygen in air at similar to 760nm are presented using a low-coherence cw-superluminescent diode. The same setup was electronically configured to cover absorption losses from 1.8 x 10(-8)cm(-1) to 7.5\% per roundtrip. This could be of interest in process analytical applications. (C) 2011 Optical Society of America

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control

Fischer, P., Ghosh, A.

NANOSCALE, 3(2):557-563, 2011 (article)

Abstract
Significant progress has been made in the fabrication of micron and sub-micron structures whose motion can be controlled in liquids under ambient conditions. The aim of many of these engineering endeavors is to be able to build and propel an artificial micro-structure that rivals the versatility of biological swimmers of similar size, e. g. motile bacterial cells. Applications for such artificial ``micro-bots'' are envisioned to range from microrheology to targeted drug delivery and microsurgery, and require full motion-control under ambient conditions. In this Mini-Review we discuss the construction, actuation, and operation of several devices that have recently been reported, especially systems that can be controlled by and propelled with homogenous magnetic fields. We describe the fabrication and associated experimental challenges and discuss potential applications.

pf

Video - Nanospropellers DOI [BibTex]


Thumb xl toc image
Weak value amplified optical activity measurements

Pfeifer, M., Fischer, P.

Opt. Express, 19(17):16508-16517, OSA, 2011 (article)

Abstract
We present a new form of optical activity measurement based on a modified weak value amplification scheme. It has recently been shown experimentally that the left- and right-circular polarization components refract with slightly different angles of refraction at a chiral interface causing a linearly polarized light beam to split into two. By introducing a polarization modulation that does not give rise to a change in the optical rotation it is possible to differentiate between the two circular polarization components even after post-selection with a linear polarizer. We show that such a modified weak value amplification measurement permits the sign of the splitting and thus the handedness of the optically active medium to be determined. Angular beam separations of Δθ ∼ 1 nanoradian, which corresponds to a circular birefringence of Δn ∼ 1 × 10−9, could be measured with a relative error of less than 1%.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2005


Thumb xl toc image
Nonlinear optical spectroscopy of chiral molecules

Fischer, P., Hache, F.

CHIRALITY, 17(8):421-437, 2005 (article)

Abstract
We review nonlinear optical processes that are specific to chiral molecules in solution and on surfaces. In contrast to conventional natural optical activity phenomena, which depend linearly on the electric field strength of the optical field, we discuss how optical processes that are nonlinear (quadratic, cubic, and quartic) functions of the electromagnetic field strength may probe optically active centers and chiral vibrations. We show that nonlinear techniques open entirely new ways of exploring chirality in chemical and biological systems: The cubic processes give rise to nonlinear circular dichroism and nonlinear optical rotation and make it possible to observe dynamic chiral processes at ultrafast time scales. The quadratic second-harmonic and sum-frequency-generation phenomena and the quartic processes may arise entirely in the electric-dipole approximation and do not require the use of circularly polarized light to detect chirality: They provide surface selectivity and their observables can be relatively much larger than in linear optical activity. These processes also give rise to the generation of light at a new color, and in liquids this frequency conversion only occurs if the solution is optically active. We survey recent chiral nonlinear optical experiments and give examples of their application to problems of biophysical interest. (C) 2005 Wiley-Liss, Inc.

pf

DOI [BibTex]

2005


DOI [BibTex]


Thumb xl toc image
Negative refraction at optical frequencies in nonmagnetic two-component molecular media

Chen, Y., Fischer, P., Wise, F.

PHYSICAL REVIEW LETTERS, 95(6), 2005 (article)

Abstract
There is significant motivation to develop media with negative refractive indices at optical frequencies, but efforts in this direction are hampered by the weakness of the magnetic response at such frequencies. We show theoretically that a nonmagnetic medium with two atomic or molecular constituents can exhibit a negative refractive index. A negative index is possible even when the real parts of both the permittivity and permeability are positive. This surprising result provides a route to isotropic negative-index media at optical frequencies.

pf

DOI [BibTex]

DOI [BibTex]

1998


Thumb xl toc image
Surface second-order nonlinear optical activity

Fischer, P., Buckingham, A.

JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 15(12):2951-2957, 1998 (article)

Abstract
Following the recent observation of a large second-harmonic intensity difference from a monolayer of chiral molecules with left and right circularly polarized light, the scattering theory is generalized and extended to predict linear and circular intensity differences for the more Versatile sum-frequency spectroscopy. Estimates indicate that intensity differences should be detectable for a typical experimental arrangement. The second-order nonlinear surface susceptibility tensor is given for different surface point groups in the electric dipole approximation; it is shown that nonlinear optical activity phenomena unambiguously probe molecular chirality only for molecular monolayers that are symmetric about the normal. Other surface symmetries can give rise to intensity differences from monolayers composed of achiral molecules. A water surface is predicted to show Linear and nonlinear optical activity in the presence of an electric field parallel to the surface. (C) 1998 Optical Society of America {[}S0740-3224(98)01311-3] OCIS codes: 190.0190, 190.4350, 240.6490.

pf

DOI [BibTex]

1998


DOI [BibTex]


Thumb xl toc image
Linear electro-optic effect in optically active liquids

Buckingham, A., Fischer, P.

CHEMICAL PHYSICS LETTERS, 297(3-4):239-246, 1998 (article)

Abstract
A linear effect of an electrostatic field F on the intensity of sum- and difference-frequency generation in a chiral liquid is predicted. It arises in the electric dipole approximation. The effect changes sign with the enantiomer and on reversing the direction of the electrostatic field. The sum-frequency generator chi(alpha beta gamma)((2)) (-omega(3);omega(1),omega(2)), where omega(3) = omega(1) + omega(2), and the electric field-induced sum-frequency generator chi(alpha beta gamma delta)((3))(-omega(3);omega(1),omega(2),0)F-delta interfere and their contributions to the scattering power can be distinguished. Encouraging predictions are given for a typical experimental arrangement. (C) 1998 Elsevier Science B.V. All rights reserved.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Monolayers of hexadecyltrimethylammonium p-tosylate at the air-water interface. 1. Sum-frequency spectroscopy

Bell, G., Li, Z., Bain, C., Fischer, P., Duffy, D.

JOURNAL OF PHYSICAL CHEMISTRY B, 102(47):9461-9472, 1998 (article)

Abstract
Sum-frequency vibrational spectroscopy has been used to determine the structure of monolayers of the cationic surfactant, hexadecyltrimethylammonium p-tosylate (C(16)TA(+)Ts(-)), at the surface of water. Selective deuteration of the cation or the anion allowed the separate detection of sum-frequency spectra of the surfactant and of counterions that are bound to the monolayer. The p-tosylate ions an oriented with their methyl groups pointing away from the aqueous subphase and with the C-2 axis tilted, on average, by 30-40 degrees from the surface normal. The vibrational spectra of C(16)TA(+) indicate that the number of gauche defects in the monolayer does not change dramatically when bromide counterions are replaced by p-tosylate. The ends of the hydrocarbon chains of C16TA+ are, however, tilted much further from the surface normal in the presence of p-tosylate than in the presence of bromide. A quantitative analysis of the sum-frequency spectra requires a knowledge of the molecular hyperpolarizability tensor: the role of ab initio calculations and Raman spectroscopy in determining the components of this tensor is discussed.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Ultraviolet resonance Raman study of drug binding in dihydrofolate reductase, gyrase, and catechol O-methyltransferase

Couling, V., Fischer, P., Klenerman, D., Huber, W.

BIOPHYSICAL JOURNAL, 75(2):1097-1106, 1998 (article)

Abstract
This paper presents a study of the use of ultraviolet resonance Raman (UVRR) spectroscopic methods as a means of elucidating aspects of drug-protein interactions. Some of the RR vibrational bands of the aromatic amino acids tyrosine and tryptophan are sensitive to the microenvironment, and the use of UV excitation radiation allows selective enhancement of the spectral features of the aromatic amino acids, enabling observation specifically of their change in microenvironment upon drug binding. The three drug-protein systems investigated in this study are dihydrofolate reductase with its inhibitor trimethoprim, gyrase with novobiocin, and catechol O-methyltransferase with dinitrocatechol. It is demonstrated that UVRR spectroscopy has adequate sensitivity to be a useful means of detecting drug-protein interactions in those systems for which the electronic absorption of the aromatic amino acids changes because of hydrogen bonding and/or possible dipole-dipole and dipole-polarizability interactions with the ligand.

pf

DOI [BibTex]

DOI [BibTex]