Header logo is


2008


no image
ENHANCED ADHESION OF PDMS SURFACES FUNCTIONALIZED BY POLY (n-BUTYL ACRYLATE) BRUSHES INSPIRED BY GECKO FOOT HAIRS

Nese, A., Lee, H., Dong, H., Aksak, B., Cusick, B., Kowalewski, T., Matyjaszewski, K., Sitti, M.

Polymer Preprints, 49(2):107, 2008 (article)

pi

[BibTex]

2008


[BibTex]


no image
Design and development of the lifting and propulsion mechanism for a biologically inspired water runner robot

Floyd, S., Sitti, M.

IEEE transactions on robotics, 24(3):698-709, IEEE, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Control of Cell Behavior by Aligned Micro/Nanofibrous Biomaterial Scaffolds Fabricated by Spinneret-Based Tunable Engineered Parameters (STEP) Technique

Nain, A. S., Phillippi, J. A., Sitti, M., MacKrell, J., Campbell, P. G., Amon, C.

Small, 4(8):1153-1159, Wiley Online Library, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Rolling and spinning friction characterization of fine particles using lateral force microscopy based contact pushing

Sümer, B., Sitti, M.

Journal of Adhesion Science and Technology, 22(5-6):481-506, Taylor & Francis Group, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Modeling the soft backing layer thickness effect on adhesion of elastic microfiber arrays

Long, R., Hui, C., Kim, S., Sitti, M.

Journal of Applied Physics, 104(4):044301, AIP, 2008 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Cross-talk compensation in atomic force microscopy

Onal, C. D., Sümer, B., Sitti, M.

Review of scientific instruments, 79(10):103706, AIP, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Adhesion of biologically inspired oil-coated polymer micropillars

Cheung, E., Sitti, M.

Journal of Adhesion Science and Technology, 22(5-6):569-589, Taylor & Francis Group, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Vision-based feedback strategy for controlled pushing of microparticles

Lynch, N. A., Onal, C. D., Schuster, E., Sitti, M.

Journal of Micro-Nano Mechatronics, 4(1-2):73-83, Springer-Verlag, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads

Behkam, B., Sitti, M.

Applied Physics Letters, 93(22):223901, AIP, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Preface to the Journal of Micro-Nano Mechatronics

Dario, P., Fukuda, T., Sitti, M.

Journal of Micro-Nano Mechatronics, 4(1-2):1-1, Springer-Verlag, 2008 (article)

pi

[BibTex]

[BibTex]


no image
A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives

Glass, P., Cheung, E., Sitti, M.

IEEE Transactions on Biomedical Engineering, 55(12):2759-2767, IEEE, 2008 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Dynamic modeling of stick slip motion in an untethered magnetic microrobot

Pawashe, C., Floyd, S., Sitti, M.

Proceedings of Robotics: Science and Systems IV, Zurich, Switzerland, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Frequency analysis with coupled nonlinear oscillators

Buchli, J., Righetti, L., Ijspeert, A.

Physica D: Nonlinear Phenomena, 237(13):1705-1718, August 2008 (article)

Abstract
We present a method to obtain the frequency spectrum of a signal with a nonlinear dynamical system. The dynamical system is composed of a pool of adaptive frequency oscillators with negative mean-field coupling. For the frequency analysis, the synchronization and adaptation properties of the component oscillators are exploited. The frequency spectrum of the signal is reflected in the statistics of the intrinsic frequencies of the oscillators. The frequency analysis is completely embedded in the dynamics of the system. Thus, no pre-processing or additional parameters, such as time windows, are needed. Representative results of the numerical integration of the system are presented. It is shown, that the oscillators tune to the correct frequencies for both discrete and continuous spectra. Due to its dynamic nature the system is also capable to track non-stationary spectra. Further, we show that the system can be modeled in a probabilistic manner by means of a nonlinear Fokker–Planck equation. The probabilistic treatment is in good agreement with the numerical results, and provides a useful tool to understand the underlying mechanisms leading to convergence.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

1998


no image
Tele-nanorobotics using an atomic force microscope as a nanorobot and sensor

Sitti, M., Hashimoto, H.

Advanced Robotics, 13(4):417-436, Taylor & Francis, 1998 (article)

pi

[BibTex]

1998


[BibTex]