Header logo is


2008


no image
Learning to control in operational space

Peters, J., Schaal, S.

International Journal of Robotics Research, 27, pages: 197-212, 2008, clmc (article)

Abstract
One of the most general frameworks for phrasing control problems for complex, redundant robots is operational space control. However, while this framework is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in com- plex robots, e.g., humanoid robots. In this paper, we suggest a learning approach for opertional space control as a direct inverse model learning problem. A first important insight for this paper is that a physically cor- rect solution to the inverse problem with redundant degrees-of-freedom does exist when learning of the inverse map is performed in a suitable piecewise linear way. The second crucial component for our work is based on the insight that many operational space controllers can be understood in terms of a constrained optimal control problem. The cost function as- sociated with this optimal control problem allows us to formulate a learn- ing algorithm that automatically synthesizes a globally consistent desired resolution of redundancy while learning the operational space controller. From the machine learning point of view, this learning problem corre- sponds to a reinforcement learning problem that maximizes an immediate reward. We employ an expectation-maximization policy search algorithm in order to solve this problem. Evaluations on a three degrees of freedom robot arm are used to illustrate the suggested approach. The applica- tion to a physically realistic simulator of the anthropomorphic SARCOS Master arm demonstrates feasibility for complex high degree-of-freedom robots. We also show that the proposed method works in the setting of learning resolved motion rate control on real, physical Mitsubishi PA-10 medical robotics arm.

am ei

link (url) DOI [BibTex]

2008


link (url) DOI [BibTex]


no image
ENHANCED ADHESION OF PDMS SURFACES FUNCTIONALIZED BY POLY (n-BUTYL ACRYLATE) BRUSHES INSPIRED BY GECKO FOOT HAIRS

Nese, A., Lee, H., Dong, H., Aksak, B., Cusick, B., Kowalewski, T., Matyjaszewski, K., Sitti, M.

Polymer Preprints, 49(2):107, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Design and development of the lifting and propulsion mechanism for a biologically inspired water runner robot

Floyd, S., Sitti, M.

IEEE transactions on robotics, 24(3):698-709, IEEE, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Control of Cell Behavior by Aligned Micro/Nanofibrous Biomaterial Scaffolds Fabricated by Spinneret-Based Tunable Engineered Parameters (STEP) Technique

Nain, A. S., Phillippi, J. A., Sitti, M., MacKrell, J., Campbell, P. G., Amon, C.

Small, 4(8):1153-1159, Wiley Online Library, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Adaptation to a sub-optimal desired trajectory

M. Mistry, E. A. G. L. T. Y. S. S. M. K.

Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)

am

PDF [BibTex]

PDF [BibTex]


no image
Rolling and spinning friction characterization of fine particles using lateral force microscopy based contact pushing

Sümer, B., Sitti, M.

Journal of Adhesion Science and Technology, 22(5-6):481-506, Taylor & Francis Group, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Modeling the soft backing layer thickness effect on adhesion of elastic microfiber arrays

Long, R., Hui, C., Kim, S., Sitti, M.

Journal of Applied Physics, 104(4):044301, AIP, 2008 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Cross-talk compensation in atomic force microscopy

Onal, C. D., Sümer, B., Sitti, M.

Review of scientific instruments, 79(10):103706, AIP, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Operational space control: A theoretical and emprical comparison

Nakanishi, J., Cory, R., Mistry, M., Peters, J., Schaal, S.

International Journal of Robotics Research, 27(6):737-757, 2008, clmc (article)

Abstract
Dexterous manipulation with a highly redundant movement system is one of the hallmarks of hu- man motor skills. From numerous behavioral studies, there is strong evidence that humans employ compliant task space control, i.e., they focus control only on task variables while keeping redundant degrees-of-freedom as compliant as possible. This strategy is robust towards unknown disturbances and simultaneously safe for the operator and the environment. The theory of operational space con- trol in robotics aims to achieve similar performance properties. However, despite various compelling theoretical lines of research, advanced operational space control is hardly found in actual robotics imple- mentations, in particular new kinds of robots like humanoids and service robots, which would strongly profit from compliant dexterous manipulation. To analyze the pros and cons of different approaches to operational space control, this paper focuses on a theoretical and empirical evaluation of different methods that have been suggested in the literature, but also some new variants of operational space controllers. We address formulations at the velocity, acceleration and force levels. First, we formulate all controllers in a common notational framework, including quaternion-based orientation control, and discuss some of their theoretical properties. Second, we present experimental comparisons of these approaches on a seven-degree-of-freedom anthropomorphic robot arm with several benchmark tasks. As an aside, we also introduce a novel parameter estimation algorithm for rigid body dynamics, which ensures physical consistency, as this issue was crucial for our successful robot implementations. Our extensive empirical results demonstrate that one of the simplified acceleration-based approaches can be advantageous in terms of task performance, ease of parameter tuning, and general robustness and compliance in face of inevitable modeling errors.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Adhesion of biologically inspired oil-coated polymer micropillars

Cheung, E., Sitti, M.

Journal of Adhesion Science and Technology, 22(5-6):569-589, Taylor & Francis Group, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Vision-based feedback strategy for controlled pushing of microparticles

Lynch, N. A., Onal, C. D., Schuster, E., Sitti, M.

Journal of Micro-Nano Mechatronics, 4(1-2):73-83, Springer-Verlag, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads

Behkam, B., Sitti, M.

Applied Physics Letters, 93(22):223901, AIP, 2008 (article)

pi

[BibTex]

[BibTex]


no image
A library for locally weighted projection regression

Klanke, S., Vijayakumar, S., Schaal, S.

Journal of Machine Learning Research, 9, pages: 623-626, 2008, clmc (article)

Abstract
In this paper we introduce an improved implementation of locally weighted projection regression (LWPR), a supervised learning algorithm that is capable of handling high-dimensional input data. As the key features, our code supports multi-threading, is available for multiple platforms, and provides wrappers for several programming languages.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Preface to the Journal of Micro-Nano Mechatronics

Dario, P., Fukuda, T., Sitti, M.

Journal of Micro-Nano Mechatronics, 4(1-2):1-1, Springer-Verlag, 2008 (article)

pi

[BibTex]

[BibTex]


no image
A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives

Glass, P., Cheung, E., Sitti, M.

IEEE Transactions on Biomedical Engineering, 55(12):2759-2767, IEEE, 2008 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Optimization strategies in human reinforcement learning

Hoffmann, H., Theodorou, E., Schaal, S.

Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)

am

PDF [BibTex]

PDF [BibTex]


no image
Dynamic modeling of stick slip motion in an untethered magnetic microrobot

Pawashe, C., Floyd, S., Sitti, M.

Proceedings of Robotics: Science and Systems IV, Zurich, Switzerland, 2008 (article)

pi

[BibTex]

[BibTex]

2005


no image
Composite adaptive control with locally weighted statistical learning

Nakanishi, J., Farrell, J. A., Schaal, S.

Neural Networks, 18(1):71-90, January 2005, clmc (article)

Abstract
This paper introduces a provably stable learning adaptive control framework with statistical learning. The proposed algorithm employs nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric regression technique. Local models are allocated as necessary and their parameters are optimized on-line. Inspired by composite adaptive control methods, the proposed learning adaptive control algorithm uses both the tracking error and the estimation error to update the parameters. We first discuss statistical learning of nonlinear functions, and motivate our choice of the locally weighted learning framework. Second, we begin with a class of first order SISO systems for theoretical development of our learning adaptive control framework, and present a stability proof including a parameter projection method that is needed to avoid potential singularities during adaptation. Then, we generalize our adaptive controller to higher order SISO systems, and discuss further extension to MIMO problems. Finally, we evaluate our theoretical control framework in numerical simulations to illustrate the effectiveness of the proposed learning adaptive controller for rapid convergence and high accuracy of control.

am

link (url) [BibTex]

2005


link (url) [BibTex]


no image
A model of smooth pursuit based on learning of the target dynamics using only retinal signals

Shibata, T., Tabata, H., Schaal, S., Kawato, M.

Neural Networks, 18, pages: 213-225, 2005, clmc (article)

Abstract
While the predictive nature of the primate smooth pursuit system has been evident through several behavioural and neurophysiological experiments, few models have attempted to explain these results comprehensively. The model we propose in this paper in line with previous models employing optimal control theory; however, we hypothesize two new issues: (1) the medical superior temporal (MST) area in the cerebral cortex implements a recurrent neural network (RNN) in order to predict the current or future target velocity, and (2) a forward model of the target motion is acquired by on-line learning. We use stimulation studies to demonstrate how our new model supports these hypotheses.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Parametric and Non-Parametric approaches for nonlinear tracking of moving objects

Hidaka, Y, Theodorou, E.

Technical Report-2005-1, 2005, clmc (article)

am

PDF [BibTex]

PDF [BibTex]

2004


no image
E. Coli Inspired Propulsion for Swimming Microrobots

Behkam, Bahareh, Sitti, Metin

pages: 1037–1041, 2004 (article)

Abstract
Medical applications are among the most fascinating areas of microrobotics. For long, scientists have dreamed of miniature smart devices that can travel inside the human body and carry out a host of complex operations such as minimally invasive surgery (MIS), highly localized drug delivery, and screening for diseases that are in their very early stages. Still a distant dream, significant progress in micro and nanotechnology brings us closer to materializing it. For such a miniature device to be injected into the body, it has to be 800 μm or smaller in diameter. Miniature, safe and energy efficient propulsion systems hold the key to maturing this technology but they pose significant challenges. Scaling the macroscale natation mechanisms to micro/nano length scales is unfeasible. It has been estimated that a vibrating-fin driven swimming robot shorter than 6 mm can not overcome the viscous drag forces in water. In this paper, the authors propose a new type of propulsion inspired by the motility mechanism of bacteria with peritrichous flagellation, such as Escherichia coli, Salmonella typhimurium and Serratia marcescens. The perfomance of the propulsive mechanism is estimated by modeling the dynamics of the motion. The motion of the moving organelle is simulated and key parameters such as velocity, distribution of force and power requirments for different configurations of the tail are determined theoretically. In order to validate the theoretical result, a scaled up model of the swimming robot is fabricated and characterized in silicone oil using the Buckingham PI theorem for scaling. The results are compared with the theoretically computed values. These robots are intended to swim in stagnation/low velocity biofluid and reach currently inaccessible areas of the human body for disease inspection and possibly treatment. Potential target regions to use these robots include eyeball cavity, cerebrospinal fluid and the urinary system.

pi

link (url) DOI [BibTex]

2004


link (url) DOI [BibTex]


no image
Discovering optimal imitation strategies

Billard, A., Epars, Y., Calinon, S., Cheng, G., Schaal, S.

Robotics and Autonomous Systems, 47(2-3):68-77, 2004, clmc (article)

Abstract
This paper develops a general policy for learning relevant features of an imitation task. We restrict our study to imitation of manipulative tasks or of gestures. The imitation process is modeled as a hierarchical optimization system, which minimizes the discrepancy between two multi-dimensional datasets. To classify across manipulation strategies, we apply a probabilistic analysis to data in Cartesian and joint spaces. We determine a general metric that optimizes the policy of task reproduction, following strategy determination. The model successfully discovers strategies in six different imitative tasks and controls task reproduction by a full body humanoid robot.

am

[BibTex]

[BibTex]


no image
Rhythmic movement is not discrete

Schaal, S., Sternad, D., Osu, R., Kawato, M.

Nature Neuroscience, 7(10):1137-1144, 2004, clmc (article)

Abstract
Rhythmic movements, like walking, chewing, or scratching, are phylogenetically old mo-tor behaviors found in many organisms, ranging from insects to primates. In contrast, discrete movements, like reaching, grasping, or kicking, are behaviors that have reached sophistication primarily in younger species, particularly in primates. Neurophysiological and computational research on arm motor control has focused almost exclusively on dis-crete movements, essentially assuming similar neural circuitry for rhythmic tasks. In con-trast, many behavioral studies focused on rhythmic models, subsuming discrete move-ment as a special case. Here, using a human functional neuroimaging experiment, we show that in addition to areas activated in rhythmic movement, discrete movement in-volves several higher cortical planning areas, despite both movement conditions were confined to the same single wrist joint. These results provide the first neuroscientific evi-dence that rhythmic arm movement cannot be part of a more general discrete movement system, and may require separate neurophysiological and theoretical treatment.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning from demonstration and adaptation of biped locomotion

Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.

Robotics and Autonomous Systems, 47(2-3):79-91, 2004, clmc (article)

Abstract
In this paper, we introduce a framework for learning biped locomotion using dynamical movement primitives based on non-linear oscillators. Our ultimate goal is to establish a design principle of a controller in order to achieve natural human-like locomotion. We suggest dynamical movement primitives as a central pattern generator (CPG) of a biped robot, an approach we have previously proposed for learning and encoding complex human movements. Demonstrated trajectories are learned through movement primitives by locally weighted regression, and the frequency of the learned trajectories is adjusted automatically by a novel frequency adaptation algorithmbased on phase resetting and entrainment of coupled oscillators. Numerical simulations and experimental implementation on a physical robot demonstrate the effectiveness of the proposed locomotioncontroller.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Towards Tractable Parameter-Free Statistical Learning (Phd Thesis)

D’Souza, A

Department of Computer Science, University of Southern California, Los Angeles, 2004, clmc (phdthesis)

am

link (url) [BibTex]

link (url) [BibTex]


no image
Atomic force microscope probe based controlled pushing for nanotribological characterization

Sitti, M.

IEEE/ASME Transactions on mechatronics, 9(2):343-349, IEEE, 2004 (article)

pi

[BibTex]

[BibTex]


no image
Feedback error learning and nonlinear adaptive control

Nakanishi, J., Schaal, S.

Neural Networks, 17(10):1453-1465, 2004, clmc (article)

Abstract
In this paper, we present our theoretical investigations of the technique of feedback error learning (FEL) from the viewpoint of adaptive control. We first discuss the relationship between FEL and nonlinear adaptive control with adaptive feedback linearization, and show that FEL can be interpreted as a form of nonlinear adaptive control. Second, we present a Lyapunov analysis suggesting that the condition of strictly positive realness (SPR) associated with the tracking error dynamics is a sufficient condition for asymptotic stability of the closed-loop dynamics. Specifically, for a class of second order SISO systems, we show that this condition reduces to KD^2 > KP; where KP and KD are positive position and velocity feedback gains, respectively. Moreover, we provide a ÔpassivityÕ-based stability analysis which suggests that SPR of the tracking error dynamics is a necessary and sufficient condition for asymptotic hyperstability. Thus, the condition KD^2>KP mentioned above is not only a sufficient but also necessary condition to guarantee asymptotic hyperstability of FEL, i.e. the tracking error is bounded and asymptotically converges to zero. As a further point, we explore the adaptive control and FEL framework for feedforward control formulations, and derive an additional sufficient condition for asymptotic stability in the sense of Lyapunov. Finally, we present numerical simulations to illustrate the stability properties of FEL obtained from our mathematical analysis.

am

link (url) [BibTex]

link (url) [BibTex]

1998


no image
Tele-nanorobotics using an atomic force microscope as a nanorobot and sensor

Sitti, M., Hashimoto, H.

Advanced Robotics, 13(4):417-436, Taylor & Francis, 1998 (article)

pi

[BibTex]

1998


[BibTex]


no image
Constructive incremental learning from only local information

Schaal, S., Atkeson, C. G.

Neural Computation, 10(8):2047-2084, 1998, clmc (article)

Abstract
We introduce a constructive, incremental learning system for regression problems that models data by means of spatially localized linear models. In contrast to other approaches, the size and shape of the receptive field of each locally linear model as well as the parameters of the locally linear model itself are learned independently, i.e., without the need for competition or any other kind of communication. Independent learning is accomplished by incrementally minimizing a weighted local cross validation error. As a result, we obtain a learning system that can allocate resources as needed while dealing with the bias-variance dilemma in a principled way. The spatial localization of the linear models increases robustness towards negative interference. Our learning system can be interpreted as a nonparametric adaptive bandwidth smoother, as a mixture of experts where the experts are trained in isolation, and as a learning system which profits from combining independent expert knowledge on the same problem. This paper illustrates the potential learning capabilities of purely local learning and offers an interesting and powerful approach to learning with receptive fields. 

am

link (url) [BibTex]

link (url) [BibTex]


no image
Local adaptive subspace regression

Vijayakumar, S., Schaal, S.

Neural Processing Letters, 7(3):139-149, 1998, clmc (article)

Abstract
Incremental learning of sensorimotor transformations in high dimensional spaces is one of the basic prerequisites for the success of autonomous robot devices as well as biological movement systems. So far, due to sparsity of data in high dimensional spaces, learning in such settings requires a significant amount of prior knowledge about the learning task, usually provided by a human expert. In this paper we suggest a partial revision of the view. Based on empirical studies, we observed that, despite being globally high dimensional and sparse, data distributions from physical movement systems are locally low dimensional and dense. Under this assumption, we derive a learning algorithm, Locally Adaptive Subspace Regression, that exploits this property by combining a dynamically growing local dimensionality reduction technique  as a preprocessing step with a nonparametric learning technique, locally weighted regression, that also learns the region of validity of the regression. The usefulness of the algorithm and the validity of its assumptions are illustrated for a synthetic data set, and for data of the inverse dynamics of human arm movements and an actual 7 degree-of-freedom anthropomorphic robot arm. 

am

link (url) [BibTex]

link (url) [BibTex]