Header logo is


2018


Thumb xl toc image
Role of symmetry in driven propulsion at low Reynolds number

Sachs, J., Morozov, K. I., Kenneth, O., Qiu, T., Segreto, N., Fischer, P., Leshansky, A. M.

Phys. Rev. E, 98(6):063105, American Physical Society, December 2018 (article)

Abstract
We theoretically and experimentally investigate low-Reynolds-number propulsion of geometrically achiral planar objects that possess a dipole moment and that are driven by a rotating magnetic field. Symmetry considerations (involving parity, $\widehat{P}$, and charge conjugation, $\widehat{C}$) establish correspondence between propulsive states depending on orientation of the dipolar moment. Although basic symmetry arguments do not forbid individual symmetric objects to efficiently propel due to spontaneous symmetry breaking, they suggest that the average ensemble velocity vanishes. Some additional arguments show, however, that highly symmetrical ($\widehat{P}$-even) objects exhibit no net propulsion while individual less symmetrical ($\widehat{C}\widehat{P}$-even) propellers do propel. Particular magnetization orientation, rendering the shape $\widehat{C}\widehat{P}$-odd, yields unidirectional motion typically associated with chiral structures, such as helices. If instead of a structure with a permanent dipole we consider a polarizable object, some of the arguments have to be modified. For instance, we demonstrate a truly achiral ($\widehat{P}$- and $\widehat{C}\widehat{P}$-even) planar shape with an induced electric dipole that can propel by electro-rotation. We thereby show that chirality is not essential for propulsion due to rotation-translation coupling at low Reynolds number.

pf

link (url) DOI Project Page [BibTex]

2018


link (url) DOI Project Page [BibTex]


Thumb xl screenshot 2018 5 9 swimming back and forth using planar flagellar propulsion at low reynolds numbers   khalil   2018   adv ...
Swimming Back and Forth Using Planar Flagellar Propulsion at Low Reynolds Numbers

Khalil, I. S. M., Tabak, A. F., Hamed, Y., Mitwally, M. E., Tawakol, M., Klingner, A., Sitti, M.

Advanced Science, 5(2):1700461, 2018 (article)

Abstract
Abstract Peritrichously flagellated Escherichia coli swim back and forth by wrapping their flagella together in a helical bundle. However, other monotrichous bacteria cannot swim back and forth with a single flagellum and planar wave propagation. Quantifying this observation, a magnetically driven soft two‐tailed microrobot capable of reversing its swimming direction without making a U‐turn trajectory or actively modifying the direction of wave propagation is designed and developed. The microrobot contains magnetic microparticles within the polymer matrix of its head and consists of two collinear, unequal, and opposite ultrathin tails. It is driven and steered using a uniform magnetic field along the direction of motion with a sinusoidally varying orthogonal component. Distinct reversal frequencies that enable selective and independent excitation of the first or the second tail of the microrobot based on their tail length ratio are found. While the first tail provides a propulsive force below one of the reversal frequencies, the second is almost passive, and the net propulsive force achieves flagellated motion along one direction. On the other hand, the second tail achieves flagellated propulsion along the opposite direction above the reversal frequency.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl toc image
Optical and Thermophoretic Control of Janus Nanopen Injection into Living Cells

Maier, C. M., Huergo, M. A., Milosevic, S., Pernpeintner, C., Li, M., Singh, D. P., Walker, D., Fischer, P., Feldmann, J., Lohmüller, T.

Nano Letters, 18, pages: 7935–7941, November 2018 (article) Accepted

Abstract
Devising strategies for the controlled injection of functional nanoparticles and reagents into living cells paves the way for novel applications in nanosurgery, sensing, and drug delivery. Here, we demonstrate the light-controlled guiding and injection of plasmonic Janus nanopens into living cells. The pens are made of a gold nanoparticle attached to a dielectric alumina shaft. Balancing optical and thermophoretic forces in an optical tweezer allows single Janus nanopens to be trapped and positioned on the surface of living cells. While the optical injection process involves strong heating of the plasmonic side, the temperature of the alumina stays significantly lower, thus allowing the functionalization with fluorescently labeled, single-stranded DNA and, hence, the spatially controlled injection of genetic material with an untethered nanocarrier.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl content nanoroboter werden ins auge injiziert
A swarm of slippery micropropellers penetrates the vitreous body of the eye

Wu, Z., Troll, J., Jeong, H. H., Wei, Q., Stang, M., Ziemssen, F., Wang, Z., Dong, M., Schnichels, S., Qiu, T., Fischer, P.

Science Advances, 4(11):eaat4388, November 2018 (article)

Abstract
The intravitreal delivery of therapeutic agents promises major benefits in the field of ocular medicine. Traditional delivery methods rely on the random, passive diffusion of molecules, which do not allow for the rapid delivery of a concentrated cargo to a defined region at the posterior pole of the eye. The use of particles promises targeted delivery but faces the challenge that most tissues including the vitreous have a tight macromolecular matrix that acts as a barrier and prevents its penetration. Here, we demonstrate novel intravitreal delivery microvehicles slippery micropropellers that can be actively propelled through the vitreous humor to reach the retina. The propulsion is achieved by helical magnetic micropropellers that have a liquid layer coating to minimize adhesion to the surrounding biopolymeric network. The submicrometer diameter of the propellers enables the penetration of the biopolymeric network and the propulsion through the porcine vitreous body of the eye over centimeter distances. Clinical optical coherence tomography is used to monitor the movement of the propellers and confirm their arrival on the retina near the optic disc. Overcoming the adhesion forces and actively navigating a swarm of micropropellers in the dense vitreous humor promise practical applications in ophthalmology.

pf

Video: Nanorobots propel through the eye link (url) DOI [BibTex]

Video: Nanorobots propel through the eye link (url) DOI [BibTex]


Thumb xl dip final
Deep Inertial Poser: Learning to Reconstruct Human Pose from Sparse Inertial Measurements in Real Time

Huang, Y., Kaufmann, M., Aksan, E., Black, M. J., Hilliges, O., Pons-Moll, G.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 37, pages: 185:1-185:15, ACM, November 2018, Two first authors contributed equally (article)

Abstract
We demonstrate a novel deep neural network capable of reconstructing human full body pose in real-time from 6 Inertial Measurement Units (IMUs) worn on the user's body. In doing so, we address several difficult challenges. First, the problem is severely under-constrained as multiple pose parameters produce the same IMU orientations. Second, capturing IMU data in conjunction with ground-truth poses is expensive and difficult to do in many target application scenarios (e.g., outdoors). Third, modeling temporal dependencies through non-linear optimization has proven effective in prior work but makes real-time prediction infeasible. To address this important limitation, we learn the temporal pose priors using deep learning. To learn from sufficient data, we synthesize IMU data from motion capture datasets. A bi-directional RNN architecture leverages past and future information that is available at training time. At test time, we deploy the network in a sliding window fashion, retaining real time capabilities. To evaluate our method, we recorded DIP-IMU, a dataset consisting of 10 subjects wearing 17 IMUs for validation in 64 sequences with 330,000 time instants; this constitutes the largest IMU dataset publicly available. We quantitatively evaluate our approach on multiple datasets and show results from a real-time implementation. DIP-IMU and the code are available for research purposes.

ps

data code pdf preprint video DOI Project Page [BibTex]

data code pdf preprint video DOI Project Page [BibTex]


Thumb xl universal custom complex magnetic spring design methodology
Universal Custom Complex Magnetic Spring Design Methodology

Woodward, M. A., Sitti, M.

IEEE Transactions on Magnetics, 54(1):1-13, October 2018 (article)

Abstract
A design methodology is presented for creating custom complex magnetic springs through the design of force-displacement curves. This methodology results in a magnet configuration, which will produce a desired force-displacement relationship. Initially, the problem is formulated and solved as a system of linear equations. Then, given the limited likelihood of a single solution being feasibly manufactured, key parameters of the solution are extracted and varied to create a family of solutions. Finally, these solutions are refined using numerical optimization. Given the properties of magnets, this methodology can create any well-defined function of force versus displacement and is model-independent. To demonstrate this flexibility, a number of example magnetic springs are designed; one of which, designed for use in a jumping-gliding robot's shape memory alloy actuated clutch, is manufactured and experimentally characterized. Due to the scaling of magnetic forces, the displacement region which these magnetic springs are most applicable is that of millimeters and below. However, this region is well situated for miniature robots and smart material actuators, where a tailored magnetic spring, designed to compliment a component, can enhance its performance while adding new functionality. The methodology is also expendable to variable interactions and multi-dimensional magnetic field design.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl cover
Deep Neural Network-based Cooperative Visual Tracking through Multiple Micro Aerial Vehicles

Price, E., Lawless, G., Ludwig, R., Martinovic, I., Buelthoff, H. H., Black, M. J., Ahmad, A.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 3(4):3193-3200, IEEE, October 2018, Also accepted and presented in the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (article)

Abstract
Multi-camera tracking of humans and animals in outdoor environments is a relevant and challenging problem. Our approach to it involves a team of cooperating micro aerial vehicles (MAVs) with on-board cameras only. DNNs often fail at objects with small scale or far away from the camera, which are typical characteristics of a scenario with aerial robots. Thus, the core problem addressed in this paper is how to achieve on-board, online, continuous and accurate vision-based detections using DNNs for visual person tracking through MAVs. Our solution leverages cooperation among multiple MAVs and active selection of most informative regions of image. We demonstrate the efficiency of our approach through simulations with up to 16 robots and real robot experiments involving two aerial robots tracking a person, while maintaining an active perception-driven formation. ROS-based source code is provided for the benefit of the community.

ps

Published Version link (url) DOI [BibTex]

Published Version link (url) DOI [BibTex]


Thumb xl encyclop med robotics
Nanoscale robotic agents in biological fluids and tissues

Palagi, S., Walker, D. Q. T., Fischer, P.

In The Encyclopedia of Medical Robotics, 2, pages: 19-42, 2, (Editors: Desai, J. P. and Ferreira, A.), World Scientific, October 2018 (inbook)

Abstract
Nanorobots are untethered structures of sub-micron size that can be controlled in a non-trivial way. Such nanoscale robotic agents are envisioned to revolutionize medicine by enabling minimally invasive diagnostic and therapeutic procedures. To be useful, nanorobots must be operated in complex biological fluids and tissues, which are often difficult to penetrate. In this chapter, we first discuss potential medical applications of motile nanorobots. We briefly present the challenges related to swimming at such small scales and we survey the rheological properties of some biological fluids and tissues. We then review recent experimental results in the development of nanorobots and in particular their design, fabrication, actuation, and propulsion in complex biological fluids and tissues. Recent work shows that their nanoscale dimension is a clear asset for operation in biological tissues, since many biological tissues consist of networks of macromolecules that prevent the passage of larger micron-scale structures, but contain dynamic pores through which nanorobots can move.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl alice
First Impressions of Personality Traits From Body Shapes

Hu, Y., Parde, C. J., Hill, M. Q., Mahmood, N., O’Toole, A. J.

Psychological Science, 29(12):1969-–1983, October 2018 (article)

Abstract
People infer the personalities of others from their facial appearance. Whether they do so from body shapes is less studied. We explored personality inferences made from body shapes. Participants rated personality traits for male and female bodies generated with a three-dimensional body model. Multivariate spaces created from these ratings indicated that people evaluate bodies on valence and agency in ways that directly contrast positive and negative traits from the Big Five domains. Body-trait stereotypes based on the trait ratings revealed a myriad of diverse body shapes that typify individual traits. Personality-trait profiles were predicted reliably from a subset of the body-shape features used to specify the three-dimensional bodies. Body features related to extraversion and conscientiousness were predicted with the highest consensus, followed by openness traits. This study provides the first comprehensive look at the range, diversity, and reliability of personality inferences that people make from body shapes.

ps

publisher site pdf DOI [BibTex]

publisher site pdf DOI [BibTex]


Thumb xl toc image
Fast spatial scanning of 3D ultrasound fields via thermography

Melde, K., Qiu, T., Fischer, P.

Applied Physics Letters, 113(13):133503, September 2018 (article)

Abstract
We propose and demonstrate a thermographic method that allows rapid scanning of ultrasound fields in a volume to yield 3D maps of the sound intensity. A thin sound-absorbing membrane is continuously translated through a volume of interest while a thermal camera records the evolution of its surface temperature. The temperature rise is a function of the absorbed sound intensity, such that the thermal image sequence can be combined to reveal the sound intensity distribution in the traversed volume. We demonstrate the mapping of ultrasound fields, which is several orders of magnitude faster than scanning with a hydrophone. Our results are in very good agreement with theoretical simulations.

pf

link (url) DOI Project Page [BibTex]


Thumb xl fict 05 00018 g003
Visual Perception and Evaluation of Photo-Realistic Self-Avatars From 3D Body Scans in Males and Females

Thaler, A., Piryankova, I., Stefanucci, J. K., Pujades, S., de la Rosa, S., Streuber, S., Romero, J., Black, M. J., Mohler, B. J.

Frontiers in ICT, 5, pages: 1-14, September 2018 (article)

Abstract
The creation or streaming of photo-realistic self-avatars is important for virtual reality applications that aim for perception and action to replicate real world experience. The appearance and recognition of a digital self-avatar may be especially important for applications related to telepresence, embodied virtual reality, or immersive games. We investigated gender differences in the use of visual cues (shape, texture) of a self-avatar for estimating body weight and evaluating avatar appearance. A full-body scanner was used to capture each participant's body geometry and color information and a set of 3D virtual avatars with realistic weight variations was created based on a statistical body model. Additionally, a second set of avatars was created with an average underlying body shape matched to each participant’s height and weight. In four sets of psychophysical experiments, the influence of visual cues on the accuracy of body weight estimation and the sensitivity to weight changes was assessed by manipulating body shape (own, average) and texture (own photo-realistic, checkerboard). The avatars were presented on a large-screen display, and participants responded to whether the avatar's weight corresponded to their own weight. Participants also adjusted the avatar's weight to their desired weight and evaluated the avatar's appearance with regard to similarity to their own body, uncanniness, and their willingness to accept it as a digital representation of the self. The results of the psychophysical experiments revealed no gender difference in the accuracy of estimating body weight in avatars. However, males accepted a larger weight range of the avatars as corresponding to their own. In terms of the ideal body weight, females but not males desired a thinner body. With regard to the evaluation of avatar appearance, the questionnaire responses suggest that own photo-realistic texture was more important to males for higher similarity ratings, while own body shape seemed to be more important to females. These results argue for gender-specific considerations when creating self-avatars.

ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl toc image
Diffusion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy

Günther, J., Börsch, M., Fischer, P.

Accounts of Chemical Research, 51(9):1911-1920, August 2018 (article)

Abstract
Self-propelled chemical motors are chemically powered micro- or nanosized swimmers. The energy required for these motors’ active motion derives from catalytic chemical reactions and the transformation of a fuel dissolved in the solution. While self-propulsion is now well established for larger particles, it is still unclear if enzymes, nature’s nanometer-sized catalysts, are potentially also self-powered nanomotors. Because of its small size, any increase in an enzyme’s diffusion due to active self-propulsion must be observed on top of the enzyme’s passive Brownian motion, which dominates at this scale. Fluorescence correlation spectroscopy (FCS) is a sensitive method to quantify the diffusion properties of single fluorescently labeled molecules in solution. FCS experiments have shown a general increase in the diffusion constant of a number of enzymes when the enzyme is catalytically active. Diffusion enhancements after addition of the enzyme’s substrate (and sometimes its inhibitor) of up to 80\% have been reported, which is at least 1 order of magnitude higher than what theory would predict. However, many factors contribute to the FCS signal and in particular the shape of the autocorrelation function, which underlies diffusion measurements by fluorescence correlation spectroscopy. These effects need to be considered to establish if and by how much the catalytic activity changes an enzyme’s diffusion.We carefully review phenomena that can play a role in FCS experiments and the determination of enzyme diffusion, including the dissociation of enzyme oligomers upon interaction with the substrate, surface binding of the enzyme to glass during the experiment, conformational changes upon binding, and quenching of the fluorophore. We show that these effects can cause changes in the FCS signal that behave similar to an increase in diffusion. However, in the case of the enzymes F1-ATPase and alkaline phosphatase, we demonstrate that there is no measurable increase in enzyme diffusion. Rather, dissociation and conformational changes account for the changes in the FCS signal in the former and fluorophore quenching in the latter. Within the experimental accuracy of our FCS measurements, we do not observe any change in diffusion due to activity for the enzymes we have investigated.We suggest useful control experiments and additional tests for future FCS experiments that should help establish if the observed diffusion enhancement is real or if it is due to an experimental or data analysis artifact. We show that fluorescence lifetime and mean intensity measurements are essential in order to identify the nature of the observed changes in the autocorrelation function. While it is clear from theory that chemically active enzymes should also act as self-propelled nanomotors, our FCS measurements show that the associated increase in diffusion is much smaller than previously reported. Further experiments are needed to quantify the contribution of the enzymes’ catalytic activity to their self-propulsion. We hope that our findings help to establish a useful protocol for future FCS studies in this field and help establish by how much the diffusion of an enzyme is enhanced through catalytic activity.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl toc imagen
Uphill production of dihydrogen by enzymatic oxidation of glucose without an external energy source

Suraniti, E., Merzeau, P., Roche, J., Gounel, S., Mark, A. G., Fischer, P., Mano, N., Kuhn, A.

Nature Communications, 9(1):3229, August 2018 (article)

Abstract
Chemical systems do not allow the coupling of energy from several simple reactions to drive a subsequent reaction, which takes place in the same medium and leads to a product with a higher energy than the one released during the first reaction. Gibbs energy considerations thus are not favorable to drive e.g., water splitting by the direct oxidation of glucose as a model reaction. Here, we show that it is nevertheless possible to carry out such an energetically uphill reaction, if the electrons released in the oxidation reaction are temporarily stored in an electromagnetic system, which is then used to raise the electrons' potential energy so that they can power the electrolysis of water in a second step. We thereby demonstrate the general concept that lower energy delivering chemical reactions can be used to enable the formation of higher energy consuming reaction products in a closed system.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl toc image
Chemical micromotors self-assemble and self-propel by spontaneous symmetry breaking

Yu, T., Chuphal, P., Thakur, S., Reigh, S. Y., Singh, D. P., Fischer, P.

Chem. Comm., 54, pages: 11933-11936, August 2018 (article)

Abstract
Self-propelling chemical motors have thus far required the fabrication of Janus particles with an asymmetric catalyst distribution. Here, we demonstrate that simple, isotropic colloids can spontaneously assemble to yield dimer motors that self-propel. In a mixture of isotropic titanium dioxide colloids with photo-chemical catalytic activity and passive silica colloids, light illumination causes diffusiophoretic attractions between the active and passive particles and leads to the formation of dimers. The dimers constitute a symmetry-broken motor, whose dynamics can be fully controlled by the illumination conditions. Computer simulations reproduce the dynamics of the colloids and are in good agreement with experiments. The current work presents a simple route to obtain large numbers of self-propelling chemical motors from a dispersion of spherically symmetric colloids through spontaneous symmetry breaking.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl toc image
Chemotaxis of Active Janus Nanoparticles

Popescu, M. N., Uspal, W. E., Bechinger, C., Fischer, P.

Nano Letters, 18(9):5345–5349, July 2018 (article)

Abstract
While colloids and molecules in solution exhibit passive Brownian motion, particles that are partially covered with a catalyst, which promotes the transformation of a fuel dissolved in the solution, can actively move. These active Janus particles are known as “chemical nanomotors” or self-propelling “swimmers” and have been realized with a range of catalysts, sizes, and particle geometries. Because their active translation depends on the fuel concentration, one expects that active colloidal particles should also be able to swim toward a fuel source. Synthesizing and engineering nanoparticles with distinct chemotactic properties may enable important developments, such as particles that can autonomously swim along a pH gradient toward a tumor. Chemotaxis requires that the particles possess an active coupling of their orientation to a chemical gradient. In this Perspective we provide a simple, intuitive description of the underlying mechanisms for chemotaxis, as well as the means to analyze and classify active particles that can show positive or negative chemotaxis. The classification provides guidance for engineering a specific response and is a useful organizing framework for the quantitative analysis and modeling of chemotactic behaviors. Chemotaxis is emerging as an important focus area in the field of active colloids and promises a number of fascinating applications for nanoparticles and particle-based delivery.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl teaser image
Programmable collective behavior in dynamically self-assembled mobile microrobotic swarms

B Yigit, , Y Alapan, , Sitti, M.

Advanced Science, July 2018 (article)

Abstract
Collective control of mobile microrobotic swarms is indispensable for their potential high-impact applications in targeted drug delivery, medical diagnostics, parallel micromanipulation, and environmental sensing and remediation. Lack of on-board computational and sensing capabilities in current microrobotic systems necessitates use of physical interactions among individual microrobots for local physical communication and cooperation. Here, we show that mobile microrobotic swarms with well-defined collective behavior can be designed by engineering magnetic interactions among individual units. Microrobots, consisting of a linear chain of self-assembled magnetic microparticles, locomote on surfaces in response to a precessing magnetic field. Control over the direction of precessing magnetic field allows engineering attractive and repulsive interactions among microrobots and, thus, collective order with well-defined spatial organization and parallel operation over macroscale distances (~ 1 cm). These microrobotic swarms can be guided through confined spaces, while preserving microrobot morphology and function. These swarms can further achieve directional transport of large cargoes on surfaces and small cargoes in bulk fluids. Described design approach, exploiting physical interactions among individual robots, enables facile and rapid formation of self-organized and reconfigurable microrobotic swarms with programmable collective order.

pi

link (url) [BibTex]


Thumb xl picture1
3D-Printed Biodegradable Microswimmer for Drug Delivery and Targeted Cell Labeling

Hakan Ceylan, , I. Ceren Yasa, , Oncay Yasa, , Ahmet Fatih Tabak, , Joshua Giltinan, , Sitti, M.

bioRxiv, pages: 379024, July 2018 (article)

Abstract
Miniaturization of interventional medical devices can leverage minimally invasive technologies by enabling operational resolution at cellular length scales with high precision and repeatability. Untethered micron-scale mobile robots can realize this by navigating and performing in hard-to-reach, confined and delicate inner body sites. However, such a complex task requires an integrated design and engineering strategy, where powering, control, environmental sensing, medical functionality and biodegradability need to be considered altogether. The present study reports a hydrogel-based, biodegradable microrobotic swimmer, which is responsive to the changes in its microenvironment for theranostic cargo delivery and release tasks. We design a double-helical magnetic microswimmer of 20 micrometers length, which is 3D-printed with complex geometrical and compositional features. At normal physiological concentrations, matrix metalloproteinase-2 (MMP-2) enzyme can entirely degrade the microswimmer body in 118 h to solubilized non-toxic products. The microswimmer can respond to the pathological concentrations of MMP-2 by swelling and thereby accelerating the release kinetics of the drug payload. Anti-ErbB 2 antibody-tagged magnetic nanoparticles released from the degraded microswimmers serve for targeted labeling of SKBR3 breast cancer cells to realize the potential of medical imaging of local tissue sites following the therapeutic intervention. These results represent a leap forward toward clinical medical microrobots that are capable of sensing, responding to the local pathological information, and performing specific therapeutic and diagnostic tasks as orderly executed operations using their smart composite material architectures.

pi

DOI Project Page [BibTex]


Thumb xl mazen
Robust Physics-based Motion Retargeting with Realistic Body Shapes

Borno, M. A., Righetti, L., Black, M. J., Delp, S. L., Fiume, E., Romero, J.

Computer Graphics Forum, 37, pages: 6:1-12, July 2018 (article)

Abstract
Motion capture is often retargeted to new, and sometimes drastically different, characters. When the characters take on realistic human shapes, however, we become more sensitive to the motion looking right. This means adapting it to be consistent with the physical constraints imposed by different body shapes. We show how to take realistic 3D human shapes, approximate them using a simplified representation, and animate them so that they move realistically using physically-based retargeting. We develop a novel spacetime optimization approach that learns and robustly adapts physical controllers to new bodies and constraints. The approach automatically adapts the motion of the mocap subject to the body shape of a target subject. This motion respects the physical properties of the new body and every body shape results in a different and appropriate movement. This makes it easy to create a varied set of motions from a single mocap sequence by simply varying the characters. In an interactive environment, successful retargeting requires adapting the motion to unexpected external forces. We achieve robustness to such forces using a novel LQR-tree formulation. We show that the simulated motions look appropriate to each character’s anatomy and their actions are robust to perturbations.

mg ps

pdf video Project Page Project Page [BibTex]

pdf video Project Page Project Page [BibTex]


Thumb xl screen shot 2018 06 29 at 4.24.39 pm
Innate turning preference of leaf-cutting ants in the absence of external orientation cues

Endlein, T., Sitti, M.

Journal of Experimental Biology, The Company of Biologists Ltd, June 2018 (article)

Abstract
Many ants use a combination of cues for orientation but how do ants find their way when all external cues are suppressed? Do they walk in a random way or are their movements spatially oriented? Here we show for the first time that leaf-cutting ants (Acromyrmex lundii) have an innate preference of turning counter-clockwise (left) when external cues are precluded. We demonstrated this by allowing individual ants to run freely on the water surface of a newly-developed treadmill. The surface tension supported medium-sized workers but effectively prevented ants from reaching the wall of the vessel, important to avoid wall-following behaviour (thigmotaxis). Most ants ran for minutes on the spot but also slowly turned counter-clockwise in the absence of visual cues. Reconstructing the effectively walked path revealed a looping pattern which could be interpreted as a search strategy. A similar turning bias was shown for groups of ants in a symmetrical Y-maze where twice as many ants chose the left branch in the absence of optical cues. Wall-following behaviour was tested by inserting a coiled tube before the Y-fork. When ants traversed a left-coiled tube, more ants chose the left box and vice versa. Adding visual cues in form of vertical black strips either outside the treadmill or on one branch of the Y-maze led to oriented walks towards the strips. It is suggested that both, the turning bias and the wall-following are employed as search strategies for an unknown environment which can be overridden by visual cues.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 1
Motility and chemotaxis of bacteria-driven microswimmers fabricated using antigen 43-mediated biotin display

Schauer, O., Mostaghaci, B., Colin, R., Hürtgen, D., Kraus, D., Sitti, M., Sourjik, V.

Scientific Reports, 8(1):9801, Nature Publishing Group, June 2018 (article)

Abstract
Bacteria-driven biohybrid microswimmers (bacteriabots) combine synthetic cargo with motile living bacteria that enable propulsion and steering. Although fabrication and potential use of such bacteriabots have attracted much attention, existing methods of fabrication require an extensive sample preparation that can drastically decrease the viability and motility of bacteria. Moreover, chemotactic behavior of bacteriabots in a liquid medium with chemical gradients has remained largely unclear. To overcome these shortcomings, we designed Escherichia coli to autonomously display biotin on its cell surface via the engineered autotransporter antigen 43 and thus to bind streptavidin-coated cargo. We show that the cargo attachment to these bacteria is greatly enhanced by motility and occurs predominantly at the cell poles, which is greatly beneficial for the fabrication of motile bacteriabots. We further performed a systemic study to understand and optimize the ability of these bacteriabots to follow chemical gradients. We demonstrate that the chemotaxis of bacteriabots is primarily limited by the cargo-dependent reduction of swimming speed and show that the fabrication of bacteriabots using elongated E. coli cells can be used to overcome this limitation.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 41586 2018 250 fig1 html
Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography

Wang, W., Timonen, J. V. I., Carlson, A., Drotlef, D., Zhang, C. T., Kolle, S., Grinthal, A., Wong, T., Hatton, B., Kang, S. H., Kennedy, S., Chi, J., Blough, R. T., Sitti, M., Mahadevan, L., Aizenberg, J.

Nature, June 2018 (article)

Abstract
Developing adaptive materials with geometries that change in response to external stimuli provides fundamental insights into the links between the physical forces involved and the resultant morphologies and creates a foundation for technologically relevant dynamic systems1,2. In particular, reconfigurable surface topography as a means to control interfacial properties 3 has recently been explored using responsive gels 4 , shape-memory polymers 5 , liquid crystals6-8 and hybrid composites9-14, including magnetically active slippery surfaces12-14. However, these designs exhibit a limited range of topographical changes and thus a restricted scope of function. Here we introduce a hierarchical magneto-responsive composite surface, made by infiltrating a ferrofluid into a microstructured matrix (termed ferrofluid-containing liquid-infused porous surfaces, or FLIPS). We demonstrate various topographical reconfigurations at multiple length scales and a broad range of associated emergent behaviours. An applied magnetic-field gradient induces the movement of magnetic nanoparticles suspended in the ferrofluid, which leads to microscale flow of the ferrofluid first above and then within the microstructured surface. This redistribution changes the initially smooth surface of the ferrofluid (which is immobilized by the porous matrix through capillary forces) into various multiscale hierarchical topographies shaped by the size, arrangement and orientation of the confining microstructures in the magnetic field. We analyse the spatial and temporal dynamics of these reconfigurations theoretically and experimentally as a function of the balance between capillary and magnetic pressures15-19 and of the geometric anisotropy of the FLIPS system. Several interesting functions at three different length scales are demonstrated: self-assembly of colloidal particles at the micrometre scale; regulated flow of liquid droplets at the millimetre scale; and switchable adhesion and friction, liquid pumping and removal of biofilms at the centimetre scale. We envision that FLIPS could be used as part of integrated control systems for the manipulation and transport of matter, thermal management, microfluidics and fouling-release materials.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl selfsensing
Self-Sensing Paper Actuators Based on Graphite–Carbon Nanotube Hybrid Films

Amjadi, M., Sitti, M.

Advanced Science, pages: 1800239, May 2018 (article)

Abstract
Abstract Soft actuators have demonstrated potential in a range of applications, including soft robotics, artificial muscles, and biomimetic devices. However, the majority of current soft actuators suffer from the lack of real-time sensory feedback, prohibiting their effective sensing and multitask function. Here, a promising strategy is reported to design bilayer electrothermal actuators capable of simultaneous actuation and sensation (i.e., self-sensing actuators), merely through two input electric terminals. Decoupled electrothermal stimulation and strain sensation is achieved by the optimal combination of graphite microparticles and carbon nanotubes (CNTs) in the form of hybrid films. By finely tuning the charge transport properties of hybrid films, the signal-to-noise ratio (SNR) of self-sensing actuators is remarkably enhanced to over 66. As a result, self-sensing actuators can actively track their displacement and distinguish the touch of soft and hard objects.

pi

link (url) DOI Project Page [BibTex]


Thumb xl propultion. of helical m
Bioinspired microrobots

Palagi, S., Fischer, P.

Nature Reviews Materials, 3, pages: 113–124, May 2018 (article)

Abstract
Microorganisms can move in complex media, respond to the environment and self-organize. The field of microrobotics strives to achieve these functions in mobile robotic systems of sub-millimetre size. However, miniaturization of traditional robots and their control systems to the microscale is not a viable approach. A promising alternative strategy in developing microrobots is to implement sensing, actuation and control directly in the materials, thereby mimicking biological matter. In this Review, we discuss design principles and materials for the implementation of robotic functionalities in microrobots. We examine different biological locomotion strategies, and we discuss how they can be artificially recreated in magnetic microrobots and how soft materials improve control and performance. We show that smart, stimuli-responsive materials can act as on-board sensors and actuators and that ‘active matter’ enables autonomous motion, navigation and collective behaviours. Finally, we provide a critical outlook for the field of microrobotics and highlight the challenges that need to be overcome to realize sophisticated microrobots, which one day might rival biological machines.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl graphene silver hybrid
Graphene-silver hybrid devices for sensitive photodetection in the ultraviolet

Paria, D., Jeong, H. H., Vadakkumbatt, V., Deshpande, P., Fischer, P., Ghosh, A., Ghosh, A.

Nanoscale, 10, pages: 7685-7693, April 2018 (article)

Abstract
The weak light-matter interaction in graphene can be enhanced with a number of strategies, among which sensitization with plasmonic nanostructures is particularly attractive. This has resulted in the development of graphene-plasmonic hybrid systems with strongly enhanced photodetection efficiencies in the visible and the IR, but none in the UV. Here, we describe a silver nanoparticle-graphene stacked optoelectronic device that shows strong enhancement of its photoresponse across the entire UV spectrum. The device fabrication strategy is scalable and modular. Self-assembly techniques are combined with physical shadow growth techniques to fabricate a regular large-area array of 50 nm silver nanoparticles onto which CVD graphene is transferred. The presence of the silver nanoparticles resulted in a plasmonically enhanced photoresponse as high as 3.2 A W-1 in the wavelength range from 330 nm to 450 nm. At lower wavelengths, close to the Van Hove singularity of the density of states in graphene, we measured an even higher responsivity of 14.5 A W-1 at 280 nm, which corresponds to a more than 10 000-fold enhancement over the photoresponse of native graphene.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl focus cover
Nanoparticles on the move for medicine

Fischer, P.

Physics World Focus on Nanotechnology, pages: 26028, (Editors: Margaret Harris), IOP Publishing Ltd and individual contributors, April 2018 (article)

Abstract
Peer Fischer outlines the prospects for creating “nanoswimmers” that can be steered through the body to deliver drugs directly to their targets Molecules don’t move very fast on their own. If they had to rely solely on diffusion – a slow and inefficient process linked to the Brownian motion of small particles and molecules in solution – then a protein mole­cule, for instance, would take around three weeks to travel a single centimetre down a nerve fibre. This is why active transport mechanisms exist in cells and in the human body: without them, all the processes of life would happen at a pace that would make snails look speedy.

pf

link (url) [BibTex]

link (url) [BibTex]


Thumb xl f1.large
Soft erythrocyte-based bacterial microswimmers for cargo delivery

Alapan, Y., Yasa, O., Schauer, O., Giltinan, J., Tabak, A. F., Sourjik, V., Sitti, M.

Science Robotics, 3(17):eaar4423, Science Robotics, April 2018 (article)

Abstract
Bacteria-propelled biohybrid microswimmers have recently shown to be able to actively transport and deliver cargos encapsulated into their synthetic constructs to specific regions locally. However, usage of synthetic materials as cargo carriers can result in inferior performance in load-carrying efficiency, biocompatibility, and biodegradability, impeding clinical translation of biohybrid microswimmers. Here, we report construction and external guidance of bacteria-driven microswimmers using red blood cells (RBCs; erythrocytes) as autologous cargo carriers for active and guided drug delivery. Multifunctional biohybrid microswimmers were fabricated by attachment of RBCs [loaded with anticancer doxorubicin drug molecules and superparamagnetic iron oxide nanoparticles (SPIONs)] to bioengineered motile bacteria, Escherichia coli MG1655, via biotin-avidin-biotin binding complex. Autonomous and on-board propulsion of biohybrid microswimmers was provided by bacteria, and their external magnetic guidance was enabled by SPIONs loaded into the RBCs. Furthermore, bacteria-driven RBC microswimmers displayed preserved deformability and attachment stability even after squeezing in microchannels smaller than their sizes, as in the case of bare RBCs. In addition, an on-demand light-activated hyperthermia termination switch was engineered for RBC microswimmers to control bacteria population after operations. RBCs, as biological and autologous cargo carriers in the biohybrid microswimmers, offer notable advantages in stability, deformability, biocompatibility, and biodegradability over synthetic cargo-carrier materials. The biohybrid microswimmer design presented here transforms RBCs from passive cargo carriers into active and guidable cargo carriers toward targeted drug and other cargo delivery applications in medicine.

pi

link (url) DOI Project Page Project Page [BibTex]

link (url) DOI Project Page Project Page [BibTex]


no image
Miniature soft robots – road to the clinic

Sitti, M.

Nature Reviews Materials, April 2018 (article)

Abstract
Soft small robots offer the opportunity to non-invasively access human tissue to perform medical operations and deliver drugs; however, challenges in materials design, biocompatibility and function control remain to be overcome for soft robots to reach the clinic.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl nl 2018 001642 0005
Wrinkling Instability and Adhesion of a Highly Bendable Gallium Oxide Nanofilm Encapsulating a Liquid-Gallium Droplet

Yunusa, M., Amador, G. J., Drotlef, D., Sitti, M.

Nano Letters, 18(4):2498-2504, March 2018 (article)

Abstract
The wrinkling and interfacial adhesion mechanics of a gallium-oxide nanofilm encapsulating a liquid-gallium droplet are presented. The native oxide nanofilm provides mechanical stability by preventing the flow of the liquid metal. We show how a crumpled oxide skin a few nanometers thick behaves akin to a highly bendable elastic nanofilm under ambient conditions. Upon compression, a wrinkling instability emerges at the contact interface to relieve the applied stress. As the load is further increased, radial wrinkles evolve, and, eventually, the oxide nanofilm ruptures. The observed wrinkling closely resembles the instability experienced by nanofilms under axisymmetric loading, thus providing further insights into the behaviors of elastic nanofilms. Moreover, the mechanical attributes of the oxide skin enable high surface conformation by exhibiting liquid-like behavior. We measured an adhesion energy of 0.238 ± 0.008 J m–2 between a liquid-gallium droplet and smooth flat glass, which is close to the measurements of thin-sheet nanomaterials such as graphene on silicon dioxide.

pi

link (url) DOI [BibTex]


Thumb xl screenshot 2018 5 9 1803 01048 pdf
Magnetic-Visual Sensor Fusion-based Dense 3D Reconstruction and Localization for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Ornek, E. P., Araujo, H., Yanik, M. F., Sitti, M.

ArXiv e-prints, March 2018 (article)

Abstract
Reliable and real-time 3D reconstruction and localization functionality is a crucial prerequisite for the navigation of actively controlled capsule endoscopic robots as an emerging, minimally invasive diagnostic and therapeutic technology for use in the gastrointestinal (GI) tract. In this study, we propose a fully dense, non-rigidly deformable, strictly real-time, intraoperative map fusion approach for actively controlled endoscopic capsule robot applications which combines magnetic and vision-based localization, with non-rigid deformations based frame-to-model map fusion. The performance of the proposed method is demonstrated using four different ex-vivo porcine stomach models. Across different trajectories of varying speed and complexity, and four different endoscopic cameras, the root mean square surface reconstruction errors 1.58 to 2.17 cm.

pi

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screenshot 2018 5 9 1803 01047 pdf
Unsupervised Odometry and Depth Learning for Endoscopic Capsule Robots

Turan, M., Ornek, E. P., Ibrahimli, N., Giracoglu, C., Almalioglu, Y., Yanik, M. F., Sitti, M.

ArXiv e-prints, March 2018 (article)

Abstract
In the last decade, many medical companies and research groups have tried to convert passive capsule endoscopes as an emerging and minimally invasive diagnostic technology into actively steerable endoscopic capsule robots which will provide more intuitive disease detection, targeted drug delivery and biopsy-like operations in the gastrointestinal(GI) tract. In this study, we introduce a fully unsupervised, real-time odometry and depth learner for monocular endoscopic capsule robots. We establish the supervision by warping view sequences and assigning the re-projection minimization to the loss function, which we adopt in multi-view pose estimation and single-view depth estimation network. Detailed quantitative and qualitative analyses of the proposed framework performed on non-rigidly deformable ex-vivo porcine stomach datasets proves the effectiveness of the method in terms of motion estimation and depth recovery.

pi

link (url) [BibTex]

link (url) [BibTex]


Thumb xl mabi201700377 fig 0001 m
Self‐Folded Hydrogel Tubes for Implantable Muscular Tissue Scaffolds

Vannozzi, L., Yasa, I. C., Ceylan, H., Menciassi, A., Ricotti, L., Sitti, M.

Macromolecular Bioscience, (0), March 2018 (article)

Abstract
Abstract Programming materials with tunable physical and chemical interactions among its components pave the way of generating 3D functional active microsystems with various potential applications in tissue engineering, drug delivery, and soft robotics. Here, the development of a recapitulated fascicle‐like implantable muscle construct by programmed self‐folding of poly(ethylene glycol) diacrylate hydrogels is reported. The system comprises two stacked layers, each with differential swelling degrees, stiffnesses, and thicknesses in 2D, which folds into a 3D tube together. Inside the tubes, muscle cell adhesion and their spatial alignment are controlled. Both skeletal and cardiac muscle cells also exhibit high viability, and cardiac myocytes preserve their contractile function over the course of 7 d. Integration of biological cells with smart, shape‐changing materials could give rise to the development of new cellular constructs for hierarchical tissue assembly, drug testing platforms, and biohybrid actuators that can perform sophisticated tasks.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 41419 2018 379 fig1 html
Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review

Sheykhansari, S., Kozielski, K., Bill, J., Sitti, M., Gemmati, D., Zamboni, P., Singh, A. V.

Cell Death \& Disease, 9(3):348, March 2018 (article)

Abstract
The effect of redox metals such as iron and copper on multiple sclerosis and amyotrophic lateral sclerosis has been intensively studied. However, the origin of these disorders remains uncertain. This review article critically describes the physiology of redox metals that produce oxidative stress, which in turn leads to cascades of immunomodulatory alteration of neurons in multiple sclerosis and amyotrophic lateral sclerosis. Iron and copper overload has been well established in motor neurons of these diseases' lesions. On the other hand, the role of other metals like cadmium participating indirectly in the redox cascade of neurobiological mechanism is less studied. In the second part of this review, we focus on this less conspicuous correlation between cadmium as an inactive-redox metal and multiple sclerosis and amyotrophic lateral sclerosis, providing novel treatment modalities and approaches as future prospects.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl cancer cells
Cancer cells biomineralize ionic gold into nanoparticles-microplates via secreting defense proteins with specific gold-binding peptides

Singh, A. V., Jahnke, T., Kishore, V., Park, B., Batuwangala, M., Bill, J., Sitti, M.

Acta Biomaterialia, March 2018 (article)

Abstract
Cancer cells have the capacity to synthesize nanoparticles (NPs). The detailed mechanism of this process is not very well documented. We report the mechanism of biomineralization of aqueous gold chloride into NPs and microplates in the breast-cancer cell line MCF7. Spherical gold NPs are synthesized in these cells in the presence of serum in the culture media by the reduction of HAuCl4. In the absence of serum, the cells exhibit gold microplate formation through seed-mediate growth albeit slower reduction. The structural characteristics of the two types of NPs under different media conditions were confirmed using scanning electron microscopy (SEM); crystallinity and metallic properties were assessed with transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). Gold-reducing proteins, related to cell stress initiate the biomineralization of HAuCl4 in cells (under serum free conditions) as confirmed by infrared (IR) spectroscopy. MCF7 cells undergo irreversible replicative senescence when exposed to a high concentration of ionic gold and conversely remain in a dormant reversible quiescent state when exposed to a low gold concentration. The latter cellular state was achievable in the presence of the rho/ROCK inhibitor Y-27632. Proteomic analysis revealed consistent expression of specific proteins under serum and serum-free conditions. A high-throughput proteomic approach to screen gold-reducing proteins and peptide sequences was utilized and validated by quartz crystal microbalance with dissipation (QCM-D). Statement of significance Cancer cells are known to synthesize gold nanoparticles and microstructures, which are promising for bioimaging and other therapeutic applications. However, the detailed mechanism of such biomineralization process is not well understood yet. Herein, we demonstrate that cancer cells exposed to gold ions (grown in serum/serum-free conditions) secrete shock and stress-related proteins with specific gold-binding/reducing polypeptides. Cells undergo reversible senescence and can recover normal physiology when treated with the senescence inhibitor depending on culture condition. The use of mammalian cells as microincubators for synthesis of such particles could have potential influence on their uptake and biocompatibility. This study has important implications for in-situ reduction of ionic gold to anisotropic micro-nanostructures that could be used in-vivo clinical applications and tumor photothermal therapy.

pi

link (url) DOI [BibTex]


Thumb xl animage2mask3
Assessing body image in anorexia nervosa using biometric self-avatars in virtual reality: Attitudinal components rather than visual body size estimation are distorted

Mölbert, S. C., Thaler, A., Mohler, B. J., Streuber, S., Romero, J., Black, M. J., Zipfel, S., Karnath, H., Giel, K. E.

Psychological Medicine, 48(4):642-653, March 2018 (article)

Abstract
Background: Body image disturbance (BID) is a core symptom of anorexia nervosa (AN), but as yet distinctive features of BID are unknown. The present study aimed at disentangling perceptual and attitudinal components of BID in AN. Methods: We investigated n=24 women with AN and n=24 controls. Based on a 3D body scan, we created realistic virtual 3D bodies (avatars) for each participant that were varied through a range of ±20% of the participants' weights. Avatars were presented in a virtual reality mirror scenario. Using different psychophysical tasks, participants identified and adjusted their actual and their desired body weight. To test for general perceptual biases in estimating body weight, a second experiment investigated perception of weight and shape matched avatars with another identity. Results: Women with AN and controls underestimated their weight, with a trend that women with AN underestimated more. The average desired body of controls had normal weight while the average desired weight of women with AN corresponded to extreme AN (DSM-5). Correlation analyses revealed that desired body weight, but not accuracy of weight estimation, was associated with eating disorder symptoms. In the second experiment, both groups estimated accurately while the most attractive body was similar to Experiment 1. Conclusions: Our results contradict the widespread assumption that patients with AN overestimate their body weight due to visual distortions. Rather, they illustrate that BID might be driven by distorted attitudes with regard to the desired body. Clinical interventions should aim at helping patients with AN to change their desired weight.

ps

doi pdf DOI Project Page [BibTex]


Thumb xl singh et al 2018 advanced functional materials
Photogravitactic Microswimmers

Singh, D. P., Uspal, W. E., Popescu, M. N., Wilson, L. G., Fischer, P.

Adv. Func. Mat., 28, pages: 1706660, Febuary 2018 (article)

Abstract
Abstract Phototactic microorganisms are commonly observed to respond to natural sunlight by swimming upward against gravity. This study demonstrates that synthetic photochemically active microswimmers can also swim against gravity. The particles initially sediment and, when illuminated at low light intensities exhibit wall‐bound states of motion near the bottom surface. Upon increasing the intensity of light, the artificial swimmers lift off from the wall and swim against gravity and away from the light source. This motion in the bulk has been further confirmed using holographic microscopy. A theoretical model is presented within the framework of self‐diffusiophoresis, which allows to unequivocally identify the photochemical activity and the phototactic response as key mechanisms in the observed phenomenology. Since the lift‐off threshold intensity depends on the particle size, it can be exploited to selectively address particles with the same density from a polydisperse mixture of active particles and move them in or out of the boundary region. This study provides a simple design strategy to fabricate artificial microswimmers whose two‐ or three‐dimensional swimming behavior can be controlled with light.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl matuschek et al 2018 small
Chiral Plasmonic Hydrogen Sensors

Matuschek, M., Singh, D. P., Hyeon-Ho, J., Nesterov, M., Weiss, T., Fischer, P., Neubrech, F., Na Liu, L.

Small, 14(7):1702990, Febuary 2018 (article)

Abstract
In this article, a chiral plasmonic hydrogen‐sensing platform using palladium‐based nanohelices is demonstrated. Such 3D chiral nanostructures fabricated by nanoglancing angle deposition exhibit strong circular dichroism both experimentally and theoretically. The chiroptical properties of the palladium nanohelices are altered upon hydrogen uptake and sensitively depend on the hydrogen concentration. Such properties are well suited for remote and spark‐free hydrogen sensing in the flammable range. Hysteresis is reduced, when an increasing amount of gold is utilized in the palladium‐gold hybrid helices. As a result, the linearity of the circular dichroism in response to hydrogen is significantly improved. The chiral plasmonic sensor scheme is of potential interest for hydrogen‐sensing applications, where good linearity and high sensitivity are required.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl screenshot 2018 5 9 1802 00475 pdf
Thermocapillary-driven fluid flow within microchannels

Amador, G. J., Tabak, A. F., Ren, Z., Alapan, Y., Yasa, O., Sitti, M.

ArXiv e-prints, Febuary 2018 (article)

Abstract
Surface tension gradients induce Marangoni flow, which may be exploited for fluid transport. At the micrometer scale, these surface-driven flows can be more significant than those driven by pressure. By introducing fluid-fluid interfaces on the walls of microfluidic channels, we use surface tension gradients to drive bulk fluid flows. The gradients are specifically induced through thermal energy, exploiting the temperature dependence of a fluid-fluid interface to generate thermocapillary flow. In this report, we provide the design concept for a biocompatible, thermocapillary microchannel capable of being powered by solar irradiation. Using temperature gradients on the order of degrees Celsius per centimeter, we achieve fluid velocities on the order of millimeters per second. Following experimental observations, fluid dynamic models, and numerical simulation, we find that the fluid velocity is linearly proportional to the provided temperature gradient, enabling full control of the fluid flow within the microchannels.

pi

link (url) Project Page [BibTex]


Thumb xl 138 2017 905 fig1 html
Sparse-then-dense alignment-based 3D map reconstruction method for endoscopic capsule robots

Turan, M., Pilavci, Y. Y., Ganiyusufoglu, I., Araujo, H., Konukoglu, E., Sitti, M.

Machine Vision and Applications, 29(2):345-359, Febuary 2018 (article)

Abstract
Despite significant progress achieved in the last decade to convert passive capsule endoscopes to actively controllable robots, robotic capsule endoscopy still has some challenges. In particular, a fully dense three-dimensional (3D) map reconstruction of the explored organ remains an unsolved problem. Such a dense map would help doctors detect the locations and sizes of the diseased areas more reliably, resulting in more accurate diagnoses. In this study, we propose a comprehensive medical 3D reconstruction method for endoscopic capsule robots, which is built in a modular fashion including preprocessing, keyframe selection, sparse-then-dense alignment-based pose estimation, bundle fusion, and shading-based 3D reconstruction. A detailed quantitative analysis is performed using a non-rigid esophagus gastroduodenoscopy simulator, four different endoscopic cameras, a magnetically activated soft capsule robot, a sub-millimeter precise optical motion tracker, and a fine-scale 3D optical scanner, whereas qualitative ex-vivo experiments are performed on a porcine pig stomach. To the best of our knowledge, this study is the first complete endoscopic 3D map reconstruction approach containing all of the necessary functionalities for a therapeutically relevant 3D map reconstruction.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl plos1
Body size estimation of self and others in females varying in BMI

Thaler, A., Geuss, M. N., Mölbert, S. C., Giel, K. E., Streuber, S., Romero, J., Black, M. J., Mohler, B. J.

PLoS ONE, 13(2), Febuary 2018 (article)

Abstract
Previous literature suggests that a disturbed ability to accurately identify own body size may contribute to overweight. Here, we investigated the influence of personal body size, indexed by body mass index (BMI), on body size estimation in a non-clinical population of females varying in BMI. We attempted to disentangle general biases in body size estimates and attitudinal influences by manipulating whether participants believed the body stimuli (personalized avatars with realistic weight variations) represented their own body or that of another person. Our results show that the accuracy of own body size estimation is predicted by personal BMI, such that participants with lower BMI underestimated their body size and participants with higher BMI overestimated their body size. Further, participants with higher BMI were less likely to notice the same percentage of weight gain than participants with lower BMI. Importantly, these results were only apparent when participants were judging a virtual body that was their own identity (Experiment 1), but not when they estimated the size of a body with another identity and the same underlying body shape (Experiment 2a). The different influences of BMI on accuracy of body size estimation and sensitivity to weight change for self and other identity suggests that effects of BMI on visual body size estimation are self-specific and not generalizable to other bodies.

ps

pdf DOI Project Page [BibTex]


Thumb xl khali1 2801793 large
Independent Actuation of Two-Tailed Microrobots

Khalil, I. S. M., Tabak, A. F., Hamed, Y., Tawakol, M., Klingner, A., Gohary, N. E., Mizaikoff, B., Sitti, M.

IEEE Robotics and Automation Letters, 3(3):1703-1710, Febuary 2018 (article)

Abstract
A soft two-tailed microrobot in low Reynolds number fluids does not achieve forward locomotion by identical tails regardless to its wiggling frequency. If the tails are nonidentical, zero forward locomotion is also observed at specific oscillation frequencies (which we refer to as the reversal frequencies), as the propulsive forces imparted to the fluid by each tail are almost equal in magnitude and opposite in direction. We find distinct reversal frequencies for the two-tailed microrobots based on their tail length ratio. At these frequencies, the microrobot achieves negligible net displacement under the influence of a periodic magnetic field. This observation allows us to fabricate groups of microrobots with tail length ratio of 1.24 ± 0.11, 1.48 ± 0.08, and 1.71 ± 0.09. We demonstrate selective actuation of microrobots based on prior characterization of their reversal frequencies. We also implement simultaneous flagellar propulsion of two microrobots and show that they can be controlled to swim along the same direction and opposite to each other using common periodic magnetic fields. In addition, independent motion control of two microrobots is achieved toward two different reference positions with average steady-state error of 110.1 ± 91.8 μm and 146.9 ± 105.9 μm.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl adma201704530 fig 0002 m
Recent Advances in Wearable Transdermal Delivery Systems

Amjadi, M., Sheykhansari, S., Nelson, B. J., Sitti, M.

Advanced Materials, 30(7):1704530, January 2018 (article)

Abstract
Abstract Wearable transdermal delivery systems have recently received tremendous attention due to their noninvasive, convenient, and prolonged administration of pharmacological agents. Here, the material prospects, fabrication processes, and drug‐release mechanisms of these types of therapeutic delivery systems are critically reviewed. The latest progress in the development of multifunctional wearable devices capable of closed‐loop sensation and drug delivery is also discussed. This survey reveals that wearable transdermal delivery has already made an impact in diverse healthcare applications, while several grand challenges remain.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl fig1b
Acoustic Fabrication via the Assembly and Fusion of Particles

Melde, K., Choi, E., Wu, Z., Palagi, S., Qiu, T., Fischer, P.

Advanced Materials, 30(3):1704507, January 2018 (article)

Abstract
Acoustic assembly promises a route toward rapid parallel fabrication of whole objects directly from solution. This study reports the contact-free and maskless assembly, and fixing of silicone particles into arbitrary 2D shapes using ultrasound fields. Ultrasound passes through an acoustic hologram to form a target image. The particles assemble from a suspension along lines of high pressure in the image due to acoustic radiation forces and are then fixed (crosslinked) in a UV-triggered reaction. For this, the particles are loaded with a photoinitiator by solvent-induced swelling. This localizes the reaction and allows the bulk suspension to be reused. The final fabricated parts are mechanically stable and self-supporting.

pf

link (url) DOI Project Page [BibTex]


Thumb xl 1 s2.0 s092523121731665x gr2 lrg
Deep EndoVO: A recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots

Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.

Neurocomputing, 275, pages: 1861 - 1870, January 2018 (article)

Abstract
Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Medical device companies and many research groups have recently made substantial progresses in converting passive capsule endoscopes to active capsule robots, enabling more accurate, precise, and intuitive detection of the location and size of the diseased areas. Since a reliable real time pose estimation functionality is crucial for actively controlled endoscopic capsule robots, in this study, we propose a monocular visual odometry (VO) method for endoscopic capsule robot operations. Our method lies on the application of the deep recurrent convolutional neural networks (RCNNs) for the visual odometry task, where convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are used for the feature extraction and inference of dynamics across the frames, respectively. Detailed analyses and evaluations made on a real pig stomach dataset proves that our system achieves high translational and rotational accuracies for different types of endoscopic capsule robot trajectories.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl nature25443 f3
Small-scale soft-bodied robot with multimodal locomotion

Hu, W., Lum, G. Z., Mastrangeli, M., Sitti, M.

Nature, 554, pages: 81-85, Nature, January 2018 (article)

Abstract
Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly1, in bioengineering such as single-cell manipulation and biosensing2, and in healthcare3,4,5,6 such as targeted drug delivery4 and minimally invasive surgery3,5. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments7,8,9,10,11,12,13. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts14,15,16. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion17, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.

pi

link (url) DOI Project Page [BibTex]


Thumb xl adfm201704902 fig 0002 m
Light‐Driven Janus Hollow Mesoporous TiO2–Au Microswimmers

Sridhar, V., Park, B., Sitti, M.

Advanced Functional Materials, 28(5):1704902, January 2018 (article)

Abstract
Abstract Light‐driven microswimmers have garnered attention for their potential use in various applications, such as environmental remediation, hydrogen evolution, and targeted drug delivery. Janus hollow mesoporous TiO2/Au (JHP–TiO2–Au) microswimmers with enhanced swimming speeds under low‐intensity ultraviolet (UV) light are presented. The swimmers show enhanced swimming speeds both in presence and absence of H2O2. The microswimmers move due to self‐electrophoresis when UV light is incident on them. There is a threefold increase in speed of JHP–TiO2–Au microswimmers in comparison with Janus solid TiO2/Au (JS–TiO2–Au) microswimmers. This increase in their speed is due to the increase in surface area of the porous swimmers and their hollow structure. These microswimmers are also made steerable by using a thin Co magnetic layer. They can be used in potential environmental applications for active photocatalytic degradation of methylene blue and targeted active drug delivery of an anticancer drug (doxurobicin) in vitro in H2O2 solution. Their increased speed from the presence of a hollow mesoporous structure is beneficial for future potential applications, such as hydrogen evolution, selective heterogeneous photocatalysis, and targeted cargo delivery.

pi

link (url) DOI Project Page [BibTex]


Thumb xl khali1 2792156 hires
Mechanical Rubbing of Blood Clots Using Helical Robots Under Ultrasound Guidance

Khalil, I. S. M., Mahdy, D., Sharkawy, A. E., Moustafa, R. R., Tabak, A. F., Mitwally, M. E., Hesham, S., Hamdi, N., Klingner, A., Mohamed, A., Sitti, M.

IEEE Robotics and Automation Letters, 3(2):1112-1119, January 2018 (article)

Abstract
A simple way to mitigate the potential negative sideeffects associated with chemical lysis of a blood clot is to tear its fibrin network via mechanical rubbing using a helical robot. Here, we achieve mechanical rubbing of blood clots under ultrasound guidance and using external magnetic actuation. Position of the helical robot is determined using ultrasound feedback and used to control its motion toward the clot, whereas the volume of the clots is estimated simultaneously using visual feedback. We characterize the shear modulus and ultimate shear strength of the blood clots to predict their removal rate during rubbing. Our in vitro experiments show the ability to move the helical robot controllably toward clots using ultrasound feedback with average and maximum errors of 0.84 ± 0.41 and 2.15 mm, respectively, and achieve removal rate of -0.614 ± 0.303 mm3/min at room temperature (25 °C) and -0.482 ± 0.23 mm3/min at body temperature (37 °C), under the influence of two rotating dipole fields at frequency of 35 Hz. We also validate the effectiveness of mechanical rubbing by measuring the number of red blood cells and platelets past the clot. Our measurements show that rubbing achieves cell count of (46 ± 10.9) × 104 cell/ml, whereas the count in the absence of rubbing is (2 ± 1.41) × 104 cell/ml, after 40 min.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Analysis of Magnetic Interaction in Remotely Controlled Magnetic Devices and Its Application to a Capsule Robot for Drug Delivery

Munoz, F., Alici, G., Zhou, H., Li, W., M. Sitti,

IEEE Transactions on Magnetics, 23(1):298-310, 2018 (article)

pi

[BibTex]

[BibTex]