Header logo is


2020


Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations
Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations

Rueegg, N., Lassner, C., Black, M. J., Schindler, K.

In Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), Febuary 2020 (inproceedings)

Abstract
The goal of many computer vision systems is to transform image pixels into 3D representations. Recent popular models use neural networks to regress directly from pixels to 3D object parameters. Such an approach works well when supervision is available, but in problems like human pose and shape estimation, it is difficult to obtain natural images with 3D ground truth. To go one step further, we propose a new architecture that facilitates unsupervised, or lightly supervised, learning. The idea is to break the problem into a series of transformations between increasingly abstract representations. Each step involves a cycle designed to be learnable without annotated training data, and the chain of cycles delivers the final solution. Specifically, we use 2D body part segments as an intermediate representation that contains enough information to be lifted to 3D, and at the same time is simple enough to be learned in an unsupervised way. We demonstrate the method by learning 3D human pose and shape from un-paired and un-annotated images. We also explore varying amounts of paired data and show that cycling greatly alleviates the need for paired data. While we present results for modeling humans, our formulation is general and can be applied to other vision problems.

ps

pdf [BibTex]

2020


pdf [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), January 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

ps

Paper Publisher Version poster link (url) DOI [BibTex]


Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms
Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms

Dong, X., Sitti, M.

The International Journal of Robotics Research, 2020 (article)

Abstract
Magnetically actuated mobile microrobots can access distant, enclosed, and small spaces, such as inside microfluidic channels and the human body, making them appealing for minimally invasive tasks. Despite their simplicity when scaling down, creating collective microrobots that can work closely and cooperatively, as well as reconfigure their formations for different tasks, would significantly enhance their capabilities such as manipulation of objects. However, a challenge of realizing such cooperative magnetic microrobots is to program and reconfigure their formations and collective motions with under-actuated control signals. This article presents a method of controlling 2D static and time-varying formations among collective self-repelling ferromagnetic microrobots (100 μm to 350 μm in diameter, up to 260 in number) by spatially and temporally programming an external magnetic potential energy distribution at the air–water interface or on solid surfaces. A general design method is introduced to program external magnetic potential energy using ferromagnets. A predictive model of the collective system is also presented to predict the formation and guide the design procedure. With the proposed method, versatile complex static formations are experimentally demonstrated and the programmability and scaling effects of formations are analyzed. We also demonstrate the collective mobility of these magnetic microrobots by controlling them to exhibit bio-inspired collective behaviors such as aggregation, directional motion with arbitrary swarm headings, and rotational swarming motion. Finally, the functions of the produced microrobotic swarm are demonstrated by controlling them to navigate through cluttered environments and complete reconfigurable cooperative manipulation tasks.

pi

DOI [BibTex]


General Movement Assessment from videos of computed {3D} infant body models is equally effective compared to conventional {RGB} Video rating
General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB Video rating

Schroeder, S., Hesse, N., Weinberger, R., Tacke, U., Gerstl, L., Hilgendorff, A., Heinen, F., Arens, M., Bodensteiner, C., Dijkstra, L. J., Pujades, S., Black, M., Hadders-Algra, M.

Early Human Development, 2020 (article)

Abstract
Background: General Movement Assessment (GMA) is a powerful tool to predict Cerebral Palsy (CP). Yet, GMA requires substantial training hampering its implementation in clinical routine. This inspired a world-wide quest for automated GMA. Aim: To test whether a low-cost, marker-less system for three-dimensional motion capture from RGB depth sequences using a whole body infant model may serve as the basis for automated GMA. Study design: Clinical case study at an academic neurodevelopmental outpatient clinic. Subjects: Twenty-nine high-risk infants were recruited and assessed at their clinical follow-up at 2-4 month corrected age (CA). Their neurodevelopmental outcome was assessed regularly up to 12-31 months CA. Outcome measures: GMA according to Hadders-Algra by a masked GMA-expert of conventional and computed 3D body model (“SMIL motion”) videos of the same GMs. Agreement between both GMAs was assessed, and sensitivity and specificity of both methods to predict CP at ≥12 months CA. Results: The agreement of the two GMA ratings was substantial, with κ=0.66 for the classification of definitely abnormal (DA) GMs and an ICC of 0.887 (95% CI 0.762;0.947) for a more detailed GM-scoring. Five children were diagnosed with CP (four bilateral, one unilateral CP). The GMs of the child with unilateral CP were twice rated as mildly abnormal. DA-ratings of both videos predicted bilateral CP well: sensitivity 75% and 100%, specificity 88% and 92% for conventional and SMIL motion videos, respectively. Conclusions: Our computed infant 3D full body model is an attractive starting point for automated GMA in infants at risk of CP.

ps

[BibTex]

[BibTex]

2009


no image
Magnetic mobile micro-robots

Pawashe, C., Floyd, S., Sitti, M.

7eme Journees Nationales de la Recherche en Robotique, 2009 (article)

pi

[BibTex]

2009


[BibTex]


no image
Gecko-Inspired Directional and Controllable Adhesion

Murphy, M. P., Aksak, B., Sitti, M.

Small, 5(2):170-175, WILEY-VCH Verlag, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Multiple magnetic microrobot control using electrostatic anchoring

Pawashe, C., Floyd, S., Sitti, M.

Applied Physics Letters, 94(16):164108, AIP, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Characterization of bacterial actuation of micro-objects

Behkam, B., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1022-1027, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Wet self-cleaning of biologically inspired elastomer mushroom shaped microfibrillar adhesives

Kim, S., Cheung, E., Sitti, M.

Langmuir, 25(13):7196-7199, ACS Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Compliant footpad design analysis for a bio-inspired quadruped amphibious robot

Park, H. S., Sitti, M.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 645-651, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A novel artificial hair receptor based on aligned PVDF micro/nano fibers

Weiting, Liu, Bilsay, Sumer, Cesare, Stefanini, Arianna, Menciassi, Fei, Li, Dajing, Chen, Paolo, Dario, Metin, Sitti, Xin, Fu

In Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on, pages: 49-54, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Robot ceiling climbers harness new tricks

Marks, Paul

New Scientist, 202(2705):18-19, Reed Business Information, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Waalbot: Agile climbing with synthetic fibrillar dry adhesives

Murphy, M. P., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1599-1600, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Biologically-Inspired Patterned and Coated Adhesives for Medical Devices

Glass, P, Chung, H, Lee, C, Tworkoski, E, Washburn, NR, Sitti, M

Journal of Medical Devices, 3(2):027537, American Society of Mechanical Engineers, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Modeling and experimental characterization of an untethered magnetic micro-robot

Pawashe, C., Floyd, S., Sitti, M.

The International Journal of Robotics Research, 28(8):1077-1094, Sage Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Towards automated nanoassembly with the atomic force microscope: A versatile drift compensation procedure

Krohs, F., Onal, C., Sitti, M., Fatikow, S.

Journal of Dynamic Systems, Measurement, and Control, 131(6):061106, American Society of Mechanical Engineers, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives

Murphy, M. P., Kim, S., Sitti, M.

ACS applied materials \& interfaces, 1(4):849-855, American Chemical Society, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Miniature devices: Voyage of the microrobots

Sitti, M.

Nature, 458(7242):1121-1122, Nature Publishing Group, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Piezoelectric ultrasonic resonant micromotor with a volume of less than 1 mm 3 for use in medical microbots

Watson, B., Friend, J., Yeo, L., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2225-2230, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Dynamic modeling and analysis of pitch motion of a basilisk lizard inspired quadruped robot running on water

Park, H. S., Floyd, S., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2655-2660, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Dry spinning based spinneret based tunable engineered parameters (STEP) technique for controlled and aligned deposition of polymeric nanofibers

Nain, A. S., Sitti, M., Jacobson, A., Kowalewski, T., Amon, C.

Macromolecular rapid communications, 30(16):1406-1412, WILEY-VCH Verlag, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Two-dimensional contact and noncontact micromanipulation in liquid using an untethered mobile magnetic microrobot

Floyd, S., Pawashe, C., Sitti, M.

IEEE Transactions on Robotics, 25(6):1332-1342, IEEE, 2009 (article)

pi

[BibTex]

[BibTex]


no image
A scaled bilateral control system for experimental one-dimensional teleoperated nanomanipulation

Onal, C. D., Sitti, M.

The International Journal of Robotics Research, 28(4):484-497, Sage Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
A Swallowable Tethered Capsule Endoscope for Diagnosing Barrett’s Esophagus

Glass, P., Sitti, M., Pennathur, A., Appasamy, R.

Gastrointestinal Endoscopy, 69(5):AB106, Mosby, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
A miniature ceiling walking robot with flat tacky elastomeric footpads

Unver, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2276-2281, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Adhesion of biologically inspired polymer microfibers on soft surfaces

Cheung, E., Sitti, M.

Langmuir, 25(12):6613-6616, ACS Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Dangling chain elastomers as repeatable fibrillar adhesives

Sitti, M., Cusick, B., Aksak, B., Nese, A., Lee, H., Dong, H., Kowalewski, T., Matyjaszewski, K.

ACS applied materials \& interfaces, 1(10):2277-2287, American Chemical Society, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Reversible dry micro-fibrillar adhesives with thermally controllable adhesion

Kim, S., Sitti, M., Xie, T., Xiao, X.

Soft Matter, 5(19):3689-3693, Royal Society of Chemistry, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Biologically Inspired Polymer Microfibrillar Arrays for Mask Sealing

Cheung, E., Aksak, B., Sitti, M.

CARNEGIE-MELLON UNIV PITTSBURGH PA, 2009 (techreport)

pi

[BibTex]

[BibTex]


no image
Tankbot: A miniature, peeling based climber on rough and smooth surfaces

Unver, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2282-2287, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Automated 2-D nanoparticle manipulation with an atomic force microscope

Onal, C. D., Ozcan, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1814-1819, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Enhanced reversible adhesion of dopamine methacrylamide-coated elastomer microfibrillar structures under wet conditions

Glass, P., Chung, H., Washburn, N. R., Sitti, M.

Langmuir, 25(12):6607-6612, ACS Publications, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Microparticle manipulation using multiple untethered magnetic micro-robots on an electrostatic surface

Floyd, S., Pawashe, C., Sitti, M.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 528-533, 2009 (inproceedings)

pi

[BibTex]

[BibTex]

2007


no image
Space exploration-towards bio-inspired climbing robots

Menon, C., Murphy, M., Sitti, M., Lan, N.

INTECH Open Access Publisher, 2007 (misc)

pi

[BibTex]

2007


[BibTex]


no image
Bacterial flagella-based propulsion and on/off motion control of microscale objects

Behkam, B., Sitti, M.

Applied Physics Letters, 90(2):023902, AIP, 2007 (article)

pi

[BibTex]

[BibTex]


no image
A strategy for vision-based controlled pushing of microparticles

Lynch, N. A., Onal, C., Schuster, E., Sitti, M.

In Robotics and Automation, 2007 IEEE International Conference on, pages: 1413-1418, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Friction of partially embedded vertically aligned carbon nanofibers inside elastomers

Aksak, B., Sitti, M., Cassell, A., Li, J., Meyyappan, M., Callen, P.

Applied Physics Letters, 91(6):061906, AIP, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Enhanced friction of elastomer microfiber adhesives with spatulate tips

Kim, S., Aksak, B., Sitti, M.

Applied Physics Letters, 91(22):221913, AIP, 2007 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Microscale and nanoscale robotics systems [grand challenges of robotics]

Sitti, M.

IEEE Robotics \& Automation Magazine, 14(1):53-60, IEEE, 2007 (article)

pi

[BibTex]

[BibTex]


no image
A new biomimetic adhesive for therapeutic capsule endoscope applications in the gastrointestinal tract

Glass, P., Sitti, M., Appasamy, R.

Gastrointestinal Endoscopy, 65(5):AB91, Mosby, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Visual servoing-based autonomous 2-D manipulation of microparticles using a nanoprobe

Onal, C. D., Sitti, M.

IEEE Transactions on control systems technology, 15(5):842-852, IEEE, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Bacteria integrated swimming microrobots

Behkam, B., Sitti, M.

In 50 years of artificial intelligence, pages: 154-163, Springer Berlin Heidelberg, 2007 (incollection)

pi

[BibTex]

[BibTex]


no image
Adhesion of biologically inspired vertical and angled polymer microfiber arrays

Aksak, B., Murphy, M. P., Sitti, M.

Langmuir, 23(6):3322-3332, ACS Publications, 2007 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Waalbot: An agile small-scale wall-climbing robot utilizing dry elastomer adhesives

Murphy, M. P., Sitti, M.

IEEE/ASME transactions on Mechatronics, 12(3):330-338, IEEE, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Autonomous 2D microparticle manipulation based on visual feedback

Onal, C. D., Sitti, M.

In Advanced intelligent mechatronics, 2007 IEEE/ASME international conference on, pages: 1-6, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
STRIDE: A highly maneuverable and non-tethered water strider robot

Song, Y. S., Sitti, M.

In Robotics and Automation, 2007 IEEE International Conference on, pages: 980-984, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Subfeature patterning of organic and inorganic materials using robotic assembly

Tafazzoli, A., Cheng, C., Pawashe, C., Sabo, E. K., Trofin, L., Sitti, M., LeDuc, P. R.

Journal of materials research, 22(06):1601-1608, Cambridge University Press, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Dry spinning polymeric nano/microfiber arrays using glass micropipettes with controlled porosities and fiber diameters

Nain, A. S., Gupta, A., Amon, C., Sitti, M.

In Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on, pages: 728-732, 2007 (inproceedings)

pi

[BibTex]

[BibTex]