Header logo is


2008


no image
ENHANCED ADHESION OF PDMS SURFACES FUNCTIONALIZED BY POLY (n-BUTYL ACRYLATE) BRUSHES INSPIRED BY GECKO FOOT HAIRS

Nese, A., Lee, H., Dong, H., Aksak, B., Cusick, B., Kowalewski, T., Matyjaszewski, K., Sitti, M.

Polymer Preprints, 49(2):107, 2008 (article)

pi

[BibTex]

2008


[BibTex]


no image
Design and development of the lifting and propulsion mechanism for a biologically inspired water runner robot

Floyd, S., Sitti, M.

IEEE transactions on robotics, 24(3):698-709, IEEE, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Control of Cell Behavior by Aligned Micro/Nanofibrous Biomaterial Scaffolds Fabricated by Spinneret-Based Tunable Engineered Parameters (STEP) Technique

Nain, A. S., Phillippi, J. A., Sitti, M., MacKrell, J., Campbell, P. G., Amon, C.

Small, 4(8):1153-1159, Wiley Online Library, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Rolling and spinning friction characterization of fine particles using lateral force microscopy based contact pushing

Sümer, B., Sitti, M.

Journal of Adhesion Science and Technology, 22(5-6):481-506, Taylor & Francis Group, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Modeling the soft backing layer thickness effect on adhesion of elastic microfiber arrays

Long, R., Hui, C., Kim, S., Sitti, M.

Journal of Applied Physics, 104(4):044301, AIP, 2008 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Cross-talk compensation in atomic force microscopy

Onal, C. D., Sümer, B., Sitti, M.

Review of scientific instruments, 79(10):103706, AIP, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Adhesion of biologically inspired oil-coated polymer micropillars

Cheung, E., Sitti, M.

Journal of Adhesion Science and Technology, 22(5-6):569-589, Taylor & Francis Group, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Vision-based feedback strategy for controlled pushing of microparticles

Lynch, N. A., Onal, C. D., Schuster, E., Sitti, M.

Journal of Micro-Nano Mechatronics, 4(1-2):73-83, Springer-Verlag, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads

Behkam, B., Sitti, M.

Applied Physics Letters, 93(22):223901, AIP, 2008 (article)

pi

[BibTex]

[BibTex]


no image
Preface to the Journal of Micro-Nano Mechatronics

Dario, P., Fukuda, T., Sitti, M.

Journal of Micro-Nano Mechatronics, 4(1-2):1-1, Springer-Verlag, 2008 (article)

pi

[BibTex]

[BibTex]


no image
A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives

Glass, P., Cheung, E., Sitti, M.

IEEE Transactions on Biomedical Engineering, 55(12):2759-2767, IEEE, 2008 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Dynamic modeling of stick slip motion in an untethered magnetic microrobot

Pawashe, C., Floyd, S., Sitti, M.

Proceedings of Robotics: Science and Systems IV, Zurich, Switzerland, 2008 (article)

pi

[BibTex]

[BibTex]

2004


no image
E. Coli Inspired Propulsion for Swimming Microrobots

Behkam, Bahareh, Sitti, Metin

pages: 1037–1041, 2004 (article)

Abstract
Medical applications are among the most fascinating areas of microrobotics. For long, scientists have dreamed of miniature smart devices that can travel inside the human body and carry out a host of complex operations such as minimally invasive surgery (MIS), highly localized drug delivery, and screening for diseases that are in their very early stages. Still a distant dream, significant progress in micro and nanotechnology brings us closer to materializing it. For such a miniature device to be injected into the body, it has to be 800 μm or smaller in diameter. Miniature, safe and energy efficient propulsion systems hold the key to maturing this technology but they pose significant challenges. Scaling the macroscale natation mechanisms to micro/nano length scales is unfeasible. It has been estimated that a vibrating-fin driven swimming robot shorter than 6 mm can not overcome the viscous drag forces in water. In this paper, the authors propose a new type of propulsion inspired by the motility mechanism of bacteria with peritrichous flagellation, such as Escherichia coli, Salmonella typhimurium and Serratia marcescens. The perfomance of the propulsive mechanism is estimated by modeling the dynamics of the motion. The motion of the moving organelle is simulated and key parameters such as velocity, distribution of force and power requirments for different configurations of the tail are determined theoretically. In order to validate the theoretical result, a scaled up model of the swimming robot is fabricated and characterized in silicone oil using the Buckingham PI theorem for scaling. The results are compared with the theoretically computed values. These robots are intended to swim in stagnation/low velocity biofluid and reach currently inaccessible areas of the human body for disease inspection and possibly treatment. Potential target regions to use these robots include eyeball cavity, cerebrospinal fluid and the urinary system.

pi

link (url) DOI [BibTex]

2004


link (url) DOI [BibTex]


no image
Atomic force microscope probe based controlled pushing for nanotribological characterization

Sitti, M.

IEEE/ASME Transactions on mechatronics, 9(2):343-349, IEEE, 2004 (article)

pi

[BibTex]

[BibTex]

2001


no image
Wing transmission for a micromechanical flying insect

Yan, J., Avadhanula, S., Birch, J., Dickinson, M., Sitti, M., Su, T., Fearing, R.

Journal of Micromechatronics, 1(3):221-237, Brill, 2001 (article)

pi

[BibTex]

2001


[BibTex]

1998


no image
Tele-nanorobotics using an atomic force microscope as a nanorobot and sensor

Sitti, M., Hashimoto, H.

Advanced Robotics, 13(4):417-436, Taylor & Francis, 1998 (article)

pi

[BibTex]

1998


[BibTex]