Header logo is


2009


no image
Magnetic mobile micro-robots

Pawashe, C., Floyd, S., Sitti, M.

7eme Journees Nationales de la Recherche en Robotique, 2009 (article)

pi

[BibTex]

2009


[BibTex]


no image
Gecko-Inspired Directional and Controllable Adhesion

Murphy, M. P., Aksak, B., Sitti, M.

Small, 5(2):170-175, WILEY-VCH Verlag, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Multiple magnetic microrobot control using electrostatic anchoring

Pawashe, C., Floyd, S., Sitti, M.

Applied Physics Letters, 94(16):164108, AIP, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Wet self-cleaning of biologically inspired elastomer mushroom shaped microfibrillar adhesives

Kim, S., Cheung, E., Sitti, M.

Langmuir, 25(13):7196-7199, ACS Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Robot ceiling climbers harness new tricks

Marks, Paul

New Scientist, 202(2705):18-19, Reed Business Information, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Biologically-Inspired Patterned and Coated Adhesives for Medical Devices

Glass, P, Chung, H, Lee, C, Tworkoski, E, Washburn, NR, Sitti, M

Journal of Medical Devices, 3(2):027537, American Society of Mechanical Engineers, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Modeling and experimental characterization of an untethered magnetic micro-robot

Pawashe, C., Floyd, S., Sitti, M.

The International Journal of Robotics Research, 28(8):1077-1094, Sage Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Towards automated nanoassembly with the atomic force microscope: A versatile drift compensation procedure

Krohs, F., Onal, C., Sitti, M., Fatikow, S.

Journal of Dynamic Systems, Measurement, and Control, 131(6):061106, American Society of Mechanical Engineers, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives

Murphy, M. P., Kim, S., Sitti, M.

ACS applied materials \& interfaces, 1(4):849-855, American Chemical Society, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Miniature devices: Voyage of the microrobots

Sitti, M.

Nature, 458(7242):1121-1122, Nature Publishing Group, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Dry spinning based spinneret based tunable engineered parameters (STEP) technique for controlled and aligned deposition of polymeric nanofibers

Nain, A. S., Sitti, M., Jacobson, A., Kowalewski, T., Amon, C.

Macromolecular rapid communications, 30(16):1406-1412, WILEY-VCH Verlag, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Two-dimensional contact and noncontact micromanipulation in liquid using an untethered mobile magnetic microrobot

Floyd, S., Pawashe, C., Sitti, M.

IEEE Transactions on Robotics, 25(6):1332-1342, IEEE, 2009 (article)

pi

[BibTex]

[BibTex]


no image
A scaled bilateral control system for experimental one-dimensional teleoperated nanomanipulation

Onal, C. D., Sitti, M.

The International Journal of Robotics Research, 28(4):484-497, Sage Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
A Swallowable Tethered Capsule Endoscope for Diagnosing Barrett’s Esophagus

Glass, P., Sitti, M., Pennathur, A., Appasamy, R.

Gastrointestinal Endoscopy, 69(5):AB106, Mosby, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Adhesion of biologically inspired polymer microfibers on soft surfaces

Cheung, E., Sitti, M.

Langmuir, 25(12):6613-6616, ACS Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Dangling chain elastomers as repeatable fibrillar adhesives

Sitti, M., Cusick, B., Aksak, B., Nese, A., Lee, H., Dong, H., Kowalewski, T., Matyjaszewski, K.

ACS applied materials \& interfaces, 1(10):2277-2287, American Chemical Society, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Reversible dry micro-fibrillar adhesives with thermally controllable adhesion

Kim, S., Sitti, M., Xie, T., Xiao, X.

Soft Matter, 5(19):3689-3693, Royal Society of Chemistry, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Biologically Inspired Polymer Microfibrillar Arrays for Mask Sealing

Cheung, E., Aksak, B., Sitti, M.

CARNEGIE-MELLON UNIV PITTSBURGH PA, 2009 (techreport)

pi

[BibTex]

[BibTex]


no image
Enhanced reversible adhesion of dopamine methacrylamide-coated elastomer microfibrillar structures under wet conditions

Glass, P., Chung, H., Washburn, N. R., Sitti, M.

Langmuir, 25(12):6607-6612, ACS Publications, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]

2004


no image
E. Coli Inspired Propulsion for Swimming Microrobots

Behkam, Bahareh, Sitti, Metin

pages: 1037–1041, 2004 (article)

Abstract
Medical applications are among the most fascinating areas of microrobotics. For long, scientists have dreamed of miniature smart devices that can travel inside the human body and carry out a host of complex operations such as minimally invasive surgery (MIS), highly localized drug delivery, and screening for diseases that are in their very early stages. Still a distant dream, significant progress in micro and nanotechnology brings us closer to materializing it. For such a miniature device to be injected into the body, it has to be 800 μm or smaller in diameter. Miniature, safe and energy efficient propulsion systems hold the key to maturing this technology but they pose significant challenges. Scaling the macroscale natation mechanisms to micro/nano length scales is unfeasible. It has been estimated that a vibrating-fin driven swimming robot shorter than 6 mm can not overcome the viscous drag forces in water. In this paper, the authors propose a new type of propulsion inspired by the motility mechanism of bacteria with peritrichous flagellation, such as Escherichia coli, Salmonella typhimurium and Serratia marcescens. The perfomance of the propulsive mechanism is estimated by modeling the dynamics of the motion. The motion of the moving organelle is simulated and key parameters such as velocity, distribution of force and power requirments for different configurations of the tail are determined theoretically. In order to validate the theoretical result, a scaled up model of the swimming robot is fabricated and characterized in silicone oil using the Buckingham PI theorem for scaling. The results are compared with the theoretically computed values. These robots are intended to swim in stagnation/low velocity biofluid and reach currently inaccessible areas of the human body for disease inspection and possibly treatment. Potential target regions to use these robots include eyeball cavity, cerebrospinal fluid and the urinary system.

pi

link (url) DOI [BibTex]

2004


link (url) DOI [BibTex]


no image
Atomic force microscope probe based controlled pushing for nanotribological characterization

Sitti, M.

IEEE/ASME Transactions on mechatronics, 9(2):343-349, IEEE, 2004 (article)

pi

[BibTex]

[BibTex]

2000


no image
Two-dimensional fine particle positioning under an optical microscope using a piezoresistive cantilever as a manipulator

Sitti, M., Hashimoto, H.

journal of Micromechatronics, 1(1):25-48, Brill, 2000 (article)

pi

[BibTex]


no image
Investigation of Virtual Reality Interface for AFM-based Nano Manipulation

Horiguchi, S., Sitti, M., Hashimoto, H.

IEEJ Transactions on Electronics, Information and Systems, 120(12):1948-1956, The Institute of Electrical Engineers of Japan, 2000 (article)

pi

[BibTex]

[BibTex]


no image
Macro to Nano Tele-Manipulation Towards Nanoelectromec hanical Systems

Sitti, M., Hashimoto, H.

Journal of Robotics and Mechatronics, 12(3):209-217, FUJI TECHNOLOGY PRESS LTD., 2000 (article)

pi

[BibTex]

[BibTex]


no image
Controlled pushing of nanoparticles: modeling and experiments

Sitti, M., Hashimoto, H.

IEEE/ASME transactions on mechatronics, 5(2):199-211, IEEE, 2000 (article)

pi

[BibTex]

[BibTex]