Header logo is


2018


no image
Kernel Recursive ABC: Point Estimation with Intractable Likelihood

Kajihara, T., Kanagawa, M., Yamazaki, K., Fukumizu, K.

Proceedings of the 35th International Conference on Machine Learning, pages: 2405-2414, PMLR, July 2018 (conference)

Abstract
We propose a novel approach to parameter estimation for simulator-based statistical models with intractable likelihood. Our proposed method involves recursive application of kernel ABC and kernel herding to the same observed data. We provide a theoretical explanation regarding why the approach works, showing (for the population setting) that, under a certain assumption, point estimates obtained with this method converge to the true parameter, as recursion proceeds. We have conducted a variety of numerical experiments, including parameter estimation for a real-world pedestrian flow simulator, and show that in most cases our method outperforms existing approaches.

pn

Paper [BibTex]

2018


Paper [BibTex]


no image
Detailed Dense Inference with Convolutional Neural Networks via Discrete Wavelet Transform

Ma, L., Stueckler, J., Wu, T., Cremers, D.

arxiv, 2018, arXiv:1808.01834 (techreport)

ev

[BibTex]

[BibTex]


no image
On Time Optimization of Centroidal Momentum Dynamics

Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 5776-5782, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing † †Implementation details and demos can be found in the source code available at https://git-amd.tuebingen.mpg.de/bponton/timeoptimization.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients

Balles, L., Hennig, P.

In Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 (inproceedings) Accepted

Abstract
The ADAM optimizer is exceedingly popular in the deep learning community. Often it works very well, sometimes it doesn't. Why? We interpret ADAM as a combination of two aspects: for each weight, the update direction is determined by the sign of stochastic gradients, whereas the update magnitude is determined by an estimate of their relative variance. We disentangle these two aspects and analyze them in isolation, gaining insight into the mechanisms underlying ADAM. This analysis also extends recent results on adverse effects of ADAM on generalization, isolating the sign aspect as the problematic one. Transferring the variance adaptation to SGD gives rise to a novel method, completing the practitioner's toolbox for problems where ADAM fails.

pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Unsupervised Contact Learning for Humanoid Estimation and Control

Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive sensors - endeffector contact wrench sensors and inertial measurement units (IMUs) - and the method is completely unsupervised. The resulting cluster means are used to efficiently compute the probability of contact in each of the six endeffector degrees of freedom (DoFs) independently. This clustering-based contact probability estimator is validated in a kinematics-based base state estimator in a simulation environment with realistic added sensor noise for locomotion over rough, low-friction terrain on which the robot is subject to foot slip and rotation. The proposed base state estimator which utilizes these six DoF contact probability estimates is shown to perform considerably better than that which determines kinematic contact constraints purely based on measured normal force.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task-Specific Dynamics to Improve Whole-Body Control

Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.

In Hua, IEEE, Beijing, China, November 2018 (inproceedings)

Abstract
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, high feedback terms can be used to improve tracking accuracy; however, this can lead to very stiff behavior or poor tracking accuracy due to limited control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
An MPC Walking Framework With External Contact Forces

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
In this work, we present an extension to a linear Model Predictive Control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To this end, we set up a two-step optimization problem. In the first optimization, we compute the Center of Mass (CoM) trajectory, foot step locations, and introduce slack variables to account for violating the imposed constraints on the Zero Moment Point (ZMP). We then use the slack variables to trigger the second optimization, in which we calculate the optimal external force that compensates for the ZMP tracking error. This optimization considers multiple contacts positions within the environment by formulating the problem as a Mixed Integer Quadratic Program (MIQP) that can be solved at a speed between 100-300 Hz. Once contact is created, the MIQP reduces to a single Quadratic Program (QP) that can be solved in real-time ({\textless}; 1kHz). Simulations show that the presented walking control scheme can withstand disturbances 2-3× larger with the additional force provided by a hand contact.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Active Uncertainty Calibration in Bayesian ODE Solvers
Active Uncertainty Calibration in Bayesian ODE Solvers

Kersting, H., Hennig, P.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 309-318, (Editors: Ihler, A. and Janzing, D.), AUAI Press, June 2016 (conference)

Abstract
There is resurging interest, in statistics and machine learning, in solvers for ordinary differential equations (ODEs) that return probability measures instead of point estimates. Recently, Conrad et al.~introduced a sampling-based class of methods that are `well-calibrated' in a specific sense. But the computational cost of these methods is significantly above that of classic methods. On the other hand, Schober et al.~pointed out a precise connection between classic Runge-Kutta ODE solvers and Gaussian filters, which gives only a rough probabilistic calibration, but at negligible cost overhead. By formulating the solution of ODEs as approximate inference in linear Gaussian SDEs, we investigate a range of probabilistic ODE solvers, that bridge the trade-off between computational cost and probabilistic calibration, and identify the inaccurate gradient measurement as the crucial source of uncertainty. We propose the novel filtering-based method Bayesian Quadrature filtering (BQF) which uses Bayesian quadrature to actively learn the imprecision in the gradient measurement by collecting multiple gradient evaluations.

ei pn

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


Automatic {LQR} Tuning Based on {G}aussian Process Global Optimization
Automatic LQR Tuning Based on Gaussian Process Global Optimization

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 270-277, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree- of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four- dimensional tuning problems highlight the method’s potential for automatic controller tuning on robotic platforms.

am ics pn

Video PDF DOI Project Page [BibTex]

Video PDF DOI Project Page [BibTex]


no image
Batch Bayesian Optimization via Local Penalization

González, J., Dai, Z., Hennig, P., Lawrence, N.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 648-657, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C.), May 2016 (conference)

ei pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Probabilistic Approximate Least-Squares
Probabilistic Approximate Least-Squares

Bartels, S., Hennig, P.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 676-684, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C. ), May 2016 (conference)

Abstract
Least-squares and kernel-ridge / Gaussian process regression are among the foundational algorithms of statistics and machine learning. Famously, the worst-case cost of exact nonparametric regression grows cubically with the data-set size; but a growing number of approximations have been developed that estimate good solutions at lower cost. These algorithms typically return point estimators, without measures of uncertainty. Leveraging recent results casting elementary linear algebra operations as probabilistic inference, we propose a new approximate method for nonparametric least-squares that affords a probabilistic uncertainty estimate over the error between the approximate and exact least-squares solution (this is not the same as the posterior variance of the associated Gaussian process regressor). This allows estimating the error of the least-squares solution on a subset of the data relative to the full-data solution. The uncertainty can be used to control the computational effort invested in the approximation. Our algorithm has linear cost in the data-set size, and a simple formal form, so that it can be implemented with a few lines of code in programming languages with linear algebra functionality.

ei pn

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
A Convex Model of Momentum Dynamics for Multi-Contact Motion Generation

Ponton, B., Herzog, A., Schaal, S., Righetti, L.

In 2016 IEEE-RAS 16th International Conference on Humanoid Robots Humanoids, pages: 842-849, IEEE, Cancun, Mexico, 2016 (inproceedings)

Abstract
Linear models for control and motion generation of humanoid robots have received significant attention in the past years, not only due to their well known theoretical guarantees, but also because of practical computational advantages. However, to tackle more challenging tasks and scenarios such as locomotion on uneven terrain, a more expressive model is required. In this paper, we are interested in contact interaction-centered motion optimization based on the momentum dynamics model. This model is non-linear and non-convex; however, we find a relaxation of the problem that allows us to formulate it as a single convex quadratically-constrained quadratic program (QCQP) that can be very efficiently optimized and is useful for multi-contact planning. This convex model is then coupled to the optimization of end-effector contact locations using a mixed integer program, which can also be efficiently solved. This becomes relevant e.g. to recover from external pushes, where a predefined stepping plan is likely to fail and an online adaptation of the contact location is needed. The performance of our algorithm is demonstrated in several multi-contact scenarios for a humanoid robot.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
On the Effects of Measurement Uncertainty in Optimal Control of Contact Interactions

Ponton, B., Schaal, S., Righetti, L.

In The 12th International Workshop on the Algorithmic Foundations of Robotics WAFR, Berkeley, USA, 2016 (inproceedings)

Abstract
Stochastic Optimal Control (SOC) typically considers noise only in the process model, i.e. unknown disturbances. However, in many robotic applications involving interaction with the environment, such as locomotion and manipulation, uncertainty also comes from lack of precise knowledge of the world, which is not an actual disturbance. We analyze the effects of also considering noise in the measurement model, by devel- oping a SOC algorithm based on risk-sensitive control, that includes the dynamics of an observer in such a way that the control law explicitly de- pends on the current measurement uncertainty. In simulation results on a simple 2D manipulator, we have observed that measurement uncertainty leads to low impedance behaviors, a result in contrast with the effects of process noise that creates stiff behaviors. This suggests that taking into account measurement uncertainty could be a potentially very interesting way to approach problems involving uncertain contact interactions.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
Inertial Sensor-Based Humanoid Joint State Estimation

Rotella, N., Mason, S., Schaal, S., Righetti, L.

In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages: 1825-1831, IEEE, Stockholm, Sweden, 2016 (inproceedings)

Abstract
This work presents methods for the determination of a humanoid robot's joint velocities and accelerations directly from link-mounted Inertial Measurement Units (IMUs) each containing a three-axis gyroscope and a three-axis accelerometer. No information about the global pose of the floating base or its links is required and precise knowledge of the link IMU poses is not necessary due to presented calibration routines. Additionally, a filter is introduced to fuse gyroscope angular velocities with joint position measurements and compensate the computed joint velocities for time-varying gyroscope biases. The resulting joint velocities are subject to less noise and delay than filtered velocities computed from numerical differentiation of joint potentiometer signals, leading to superior performance in joint feedback control as demonstrated in experiments performed on a SARCOS hydraulic humanoid.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Stepping Stabilization Using a Combination of DCM Tracking and Step Adjustment

Khadiv, M., Kleff, S., Herzog, A., Moosavian, S. A. A., Schaal, S., Righetti, L.

In 2016 4th International Conference on Robotics and Mechatronics (ICROM), pages: 130-135, IEEE, Teheran, Iran, 2016 (inproceedings)

Abstract
In this paper, a method for stabilizing biped robots stepping by a combination of Divergent Component of Motion (DCM) tracking and step adjustment is proposed. In this method, the DCM trajectory is generated, consistent with the predefined footprints. Furthermore, a swing foot trajectory modification strategy is proposed to adapt the landing point, using DCM measurement. In order to apply the generated trajectories to the full robot, a Hierarchical Inverse Dynamics (HID) is employed. The HID enables us to use different combinations of the DCM tracking and step adjustment for stabilizing different biped robots. Simulation experiments on two scenarios for two different simulated robots, one with active ankles and the other with passive ankles, are carried out. Simulation results demonstrate the effectiveness of the proposed method for robots with both active and passive ankles.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Structured contact force optimization for kino-dynamic motion generation

Herzog, A., Schaal, S., Righetti, L.

In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 2703-2710, IEEE, Daejeon, South Korea, 2016 (inproceedings)

Abstract
Optimal control approaches in combination with trajectory optimization have recently proven to be a promising control strategy for legged robots. Computationally efficient and robust algorithms were derived using simplified models of the contact interaction between robot and environment such as the linear inverted pendulum model (LIPM). However, as humanoid robots enter more complex environments, less restrictive models become increasingly important. As we leave the regime of linear models, we need to build dedicated solvers that can compute interaction forces together with consistent kinematic plans for the whole-body. In this paper, we address the problem of planning robot motion and interaction forces for legged robots given predefined contact surfaces. The motion generation process is decomposed into two alternating parts computing force and motion plans in coherence. We focus on the properties of the momentum computation leading to sparse optimal control formulations to be exploited by a dedicated solver. In our experiments, we demonstrate that our motion generation algorithm computes consistent contact forces and joint trajectories for our humanoid robot. We also demonstrate the favorable time complexity due to our formulation and composition of the momentum equations.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Balancing and Walking Using Full Dynamics LQR Control With Contact Constraints

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 63-68, IEEE, Cancun, Mexico, 2016 (inproceedings)

Abstract
Torque control algorithms which consider robot dynamics and contact constraints are important for creating dynamic behaviors for humanoids. As computational power increases, algorithms tend to also increase in complexity. However, it is not clear how much complexity is really required to create controllers which exhibit good performance. In this paper, we study the capabilities of a simple approach based on contact consistent LQR controllers designed around key poses to control various tasks on a humanoid robot. We present extensive experimental results on a hydraulic, torque controlled humanoid performing balancing and stepping tasks. This feedback control approach captures the necessary synergies between the DoFs of the robot to guarantee good control performance. We show that for the considered tasks, it is only necessary to re-linearize the dynamics of the robot at different contact configurations and that increasing the number of LQR controllers along desired trajectories does not improve performance. Our result suggest that very simple controllers can yield good performance competitive with current state of the art, but more complex, optimization-based whole-body controllers. A video of the experiments can be found at https://youtu.be/5T08CNKV1hw.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Step Timing Adjustement: a Step toward Generating Robust Gaits

Khadiv, M., Herzog, A., Moosavian, S. A. A., Righetti, L.

In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 35-42, IEEE, Cancun, Mexico, 2016 (inproceedings)

Abstract
Step adjustment for humanoid robots has been shown to improve robustness in gaits. However, step duration adaptation is often neglected in control strategies. In this paper, we propose an approach that combines both step location and timing adjustment for generating robust gaits. In this approach, step location and step timing are decided, based on feedback from the current state of the robot. The proposed approach is comprised of two stages. In the first stage, the nominal step location and step duration for the next step or a previewed number of steps are specified. In this stage which is done at the start of each step, the main goal is to specify the best step length and step duration for a desired walking speed. The second stage deals with finding the best landing point and landing time of the swing foot at each control cycle. In this stage, stability of the gaits is preserved by specifying a desired offset between the swing foot landing point and the Divergent Component of Motion (DCM) at the end of current step. After specifying the landing point of the swing foot at a desired time, the swing foot trajectory is regenerated at each control cycle to realize desired landing properties. Simulation on different scenarios shows the robustness of the generated gaits from our proposed approach compared to the case where no timing adjustment is employed.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2010


no image
Using an Infinite Von Mises-Fisher Mixture Model to Cluster Treatment Beam Directions in External Radiation Therapy

Bangert, M., Hennig, P., Oelfke, U.

In pages: 746-751 , (Editors: Draghici, S. , T.M. Khoshgoftaar, V. Palade, W. Pedrycz, M.A. Wani, X. Zhu), IEEE, Piscataway, NJ, USA, Ninth International Conference on Machine Learning and Applications (ICMLA), December 2010 (inproceedings)

Abstract
We present a method for fully automated selection of treatment beam ensembles for external radiation therapy. We reformulate the beam angle selection problem as a clustering problem of locally ideal beam orientations distributed on the unit sphere. For this purpose we construct an infinite mixture of von Mises-Fisher distributions, which is suited in general for density estimation from data on the D-dimensional sphere. Using a nonparametric Dirichlet process prior, our model infers probability distributions over both the number of clusters and their parameter values. We describe an efficient Markov chain Monte Carlo inference algorithm for posterior inference from experimental data in this model. The performance of the suggested beam angle selection framework is illustrated for one intra-cranial, pancreas, and prostate case each. The infinite von Mises-Fisher mixture model (iMFMM) creates between 18 and 32 clusters, depending on the patient anatomy. This suggests to use the iMFMM directly for beam ensemble selection in robotic radio surgery, or to generate low-dimensional input for both subsequent optimization of trajectories for arc therapy and beam ensemble selection for conventional radiation therapy.

ei pn

Web DOI [BibTex]

2010


Web DOI [BibTex]


no image
Coherent Inference on Optimal Play in Game Trees

Hennig, P., Stern, D., Graepel, T.

In JMLR Workshop and Conference Proceedings Volume 9: AISTATS 2010, pages: 326-333, (Editors: Teh, Y.W. , M. Titterington ), JMLR, Cambridge, MA, USA, Thirteenth International Conference on Artificial Intelligence and Statistics, May 2010 (inproceedings)

Abstract
Round-based games are an instance of discrete planning problems. Some of the best contemporary game tree search algorithms use random roll-outs as data. Relying on a good policy, they learn on-policy values by propagating information upwards in the tree, but not between sibling nodes. Here, we present a generative model and a corresponding approximate message passing scheme for inference on the optimal, off-policy value of nodes in smooth AND/OR trees, given random roll-outs. The crucial insight is that the distribution of values in game trees is not completely arbitrary. We define a generative model of the on-policy values using a latent score for each state, representing the value under the random roll-out policy. Inference on the values under the optimal policy separates into an inductive, pre-data step and a deductive, post-data part. Both can be solved approximately with Expectation Propagation, allowing off-policy value inference for any node in the (exponentially big) tree in linear time.

ei pn

PDF Web [BibTex]

PDF Web [BibTex]


no image
Constrained Accelerations for Controlled Geometric Reduction: Sagittal-Plane Decoupling for Bipedal Locomotion

Gregg, R., Righetti, L., Buchli, J., Schaal, S.

In 2010 10th IEEE-RAS International Conference on Humanoid Robots, pages: 1-7, IEEE, Nashville, USA, 2010 (inproceedings)

Abstract
Energy-shaping control methods have produced strong theoretical results for asymptotically stable 3D bipedal dynamic walking in the literature. In particular, geometric controlled reduction exploits robot symmetries to control momentum conservation laws that decouple the sagittal-plane dynamics, which are easier to stabilize. However, the associated control laws require high-dimensional matrix inverses multiplied with complicated energy-shaping terms, often making these control theories difficult to apply to highly-redundant humanoid robots. This paper presents a first step towards the application of energy-shaping methods on real robots by casting controlled reduction into a framework of constrained accelerations for inverse dynamics control. By representing momentum conservation laws as constraints in acceleration space, we construct a general expression for desired joint accelerations that render the constraint surface invariant. By appropriately choosing an orthogonal projection, we show that the unconstrained (reduced) dynamics are decoupled from the constrained dynamics. Any acceleration-based controller can then be used to stabilize this planar subsystem, including passivity-based methods. The resulting control law is surprisingly simple and represents a practical way to employ control theoretic stability results in robotic platforms. Simulated walking of a 3D compass-gait biped show correspondence between the new and original controllers, and simulated motions of a 16-DOF humanoid demonstrate the applicability of this method.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inverse dynamics with optimal distribution of ground reaction forces for legged robot

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In Proceedings of the 13th International Conference on Climbing and Walking Robots (CLAWAR), pages: 580-587, Nagoya, Japan, sep 2010 (inproceedings)

Abstract
Contact interaction with the environment is crucial in the design of locomotion controllers for legged robots, to prevent slipping for example. Therefore, it is of great importance to be able to control the effects of the robots movements on the contact reaction forces. In this contribution, we extend a recent inverse dynamics algorithm for floating base robots to optimize the distribution of contact forces while achieving precise trajectory tracking. The resulting controller is algorithmically simple as compared to other approaches. Numerical simulations show that this result significantly increases the range of possible movements of a humanoid robot as compared to the previous inverse dynamics algorithm. We also present a simplification of the result where no inversion of the inertia matrix is needed which is particularly relevant for practical use on a real robot. Such an algorithm becomes interesting for agile locomotion of robots on difficult terrains where the contacts with the environment are critical, such as walking over rough or slippery terrain.

am mg

DOI [BibTex]

DOI [BibTex]

2007


no image
Hand placement during quadruped locomotion in a humanoid robot: A dynamical system approach

Degallier, S., Righetti, L., Ijspeert, A.

In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 2047-2052, IEEE, San Diego, USA, 2007 (inproceedings)

Abstract
Locomotion on an irregular surface is a challenging task in robotics. Among different problems to solve to obtain robust locomotion, visually guided locomotion and accurate foot placement are of crucial importance. Robust controllers able to adapt to sensory-motor feedbacks, in particular to properly place feet on specific locations, are thus needed. Dynamical systems are well suited for this task as any online modification of the parameters leads to a smooth adaptation of the trajectories, allowing a safe integration of sensory-motor feedback. In this contribution, as a first step in the direction of locomotion on irregular surfaces, we present a controller that allows hand placement during crawling in a simulated humanoid robot. The goal of the controller is to superimpose rhythmic movements for crawling with discrete (i.e. short-term) modulations of the hand placements to reach specific marks on the ground.

mg

link (url) DOI [BibTex]

2007


link (url) DOI [BibTex]


no image
Lower body realization of the baby humanoid - ‘iCub’

Tsagarakis, N., Becchi, F., Righetti, L., Ijspeert, A., Caldwell, D.

In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3616-3622, IEEE, San Diego, USA, 2007 (inproceedings)

Abstract
Nowadays, the understanding of the human cognition and it application to robotic systems forms a great challenge of research. The iCub is a robotic platform that was developed within the RobotCub European project to provide the cognition research community with an open baby- humanoid platform for understanding and development of cognitive systems. In this paper we present the design requirements and mechanical realization of the lower body developed for the "iCub". In particular the leg and the waist mechanisms adopted for lower body to match the size and physical abilities of a 2 frac12 year old human baby are introduced.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]