Header logo is


2011


no image
Design and application of a wire-driven bidirectional telescopic mechanism for workspace expansion with a focus on shipbuilding tasks

Lee, D., Chang, D., Shin, Y., Son, D., Kim, T., Lee, K., Kim, J.

Advanced Robotics, 25, 2011 (article)

pi

[BibTex]

2011


[BibTex]


no image
Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives

Murphy, M. P., Kute, C., Mengüç, Y., Sitti, M.

The International Journal of Robotics Research, 30(1):118-133, SAGE Publications Sage UK: London, England, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Automated 2-D nanoparticle manipulation using atomic force microscopy

Onal, C. D., Ozcan, O., Sitti, M.

IEEE Transactions on Nanotechnology, 10(3):472-481, IEEE, 2011 (article)

pi

[BibTex]

[BibTex]


no image
Biaxial mechanical modeling of the small intestine

Bellini, C., Glass, P., Sitti, M., Di Martino, E. S.

Journal of the mechanical behavior of biomedical materials, 4(8):1727-1740, Elsevier, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems

Diller, E., Pawashe, C., Floyd, S., Sitti, M.

The International Journal of Robotics Research, 30(14):1667-1680, SAGE Publications Sage UK: London, England, 2011 (article)

pi

[BibTex]

[BibTex]


no image
Modeling of stochastic motion of bacteria propelled spherical microbeads

Arabagi, V., Behkam, B., Cheung, E., Sitti, M.

Journal of Applied Physics, 109(11):114702, AIP, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
The effect of aspect ratio on adhesion and stiffness for soft elastic fibres

Aksak, B., Hui, C., Sitti, M.

Journal of The Royal Society Interface, 8(61):1166-1175, The Royal Society, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Enhancing adhesion of biologically inspired polymer microfibers with a viscous oil coating

Cheung, E., Sitti, M.

The Journal of Adhesion, 87(6):547-557, Taylor & Francis Group, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Piezoelectric polymer fiber arrays for tactile sensing applications

Sümer, B., Aksak, B., Şsahin, K., Chuengsatiansup, K., Sitti, M.

Sensor Letters, 9(2):457-463, American Scientific Publishers, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Control methodologies for a heterogeneous group of untethered magnetic micro-robots

Floyd, S., Diller, E., Pawashe, C., Sitti, M.

The International Journal of Robotics Research, 30(13):1553-1565, SAGE Publications, 2011 (article)

pi

[BibTex]

[BibTex]

2006


no image
An ultrasonic standing-wave-actuated nano-positioning walking robot: piezoelectric-metal composite beam modeling

Son, K. J., Kartik, V., Wickert, J. A., Sitti, M.

Journal of vibration and control, 12(12):1293-1309, Sage Publications, 2006 (article)

pi

[BibTex]

2006


[BibTex]


no image
IEEE TRANSACTIONS ON ROBOTICS

VOLZ, RICHARD A, TARN, TJ, MACIEJEWSKI, ANTHONY A, LEE, SUKHAN, BICCHI, ANTONIO, DE LUCA, ALESSANDRO, LUH, PETER B, TAYLOR, RUSSELL H, BEKEY, GEORGE A, ARAI, HIROHIKO, others

2006 (article)

pi

[BibTex]

[BibTex]


no image
Design methodology for biomimetic propulsion of miniature swimming robots

Behkam, B., Sitti, M.

Trans.-ASME Journal of Dynamic Systems Measurement and Control, 128(1):36, ASME, 2006 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Augmented reality user interface for an atomic force microscope-based nanorobotic system

Vogl, W., Ma, B. K., Sitti, M.

IEEE transactions on nanotechnology, 5(4):397-406, IEEE, 2006 (article)

pi

[BibTex]

[BibTex]


no image
Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces

Kwon, J., Cheung, E., Park, S., Sitti, M.

Biomedical Materials, 1(4):216, IOP Publishing, 2006 (article)

pi

[BibTex]

[BibTex]


no image
Compliant and low-cost humidity nanosensors using nanoporous polymer membranes

Yang, B., Aksak, B., Lin, Q., Sitti, M.

Sensors and Actuators B: Chemical, 114(1):254-262, Elsevier, 2006 (article)

pi

[BibTex]

[BibTex]


no image
Task-based and stable telenanomanipulation in a nanoscale virtual environment

Kim, S., Sitti, M.

IEEE Transactions on automation science and engineering, 3(3):240-247, IEEE, 2006 (article)

pi

[BibTex]

[BibTex]


no image
Drawing suspended polymer micro-/nanofibers using glass micropipettes

Nain, A. S., Wong, J. C., Amon, C., Sitti, M.

Applied Physics Letters, 89(18):183105, AIP, 2006 (article)

pi

[BibTex]

[BibTex]


no image
Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives

Kim, S., Sitti, M.

Applied Physics Letters, 89(26):261911-261911, AIP, 2006 (article)

pi

Project Page [BibTex]


no image
Two-dimensional vision-based autonomous microparticle manipulation using a nanoprobe

Pawashe, C., Sitti, M.

Journal of Micromechatronics, 3(3):285-306, Brill, 2006 (article)

pi

[BibTex]

[BibTex]


no image
A biomimetic climbing robot based on the gecko

Menon, C., Sitti, M.

Journal of Bionic Engineering, 3(3):115-125, 2006 (article)

pi

[BibTex]

[BibTex]


no image
Proximal probes based nanorobotic drawing of polymer micro/nanofibers

Nain, A. S., Amon, C., Sitti, M.

IEEE transactions on nanotechnology, 5(5):499-510, IEEE, 2006 (article)

pi

[BibTex]

[BibTex]


no image
Rocking Stamper and Jumping Snake from a Dynamical System Approach to Artificial Life

Der, R., Hesse, F., Martius, G.

Adaptive Behavior, 14(2):105-115, 2006 (article)

Abstract
Dynamical systems offer intriguing possibilities as a substrate for the generation of behavior because of their rich behavioral complexity. However this complexity together with the largely covert relation between the parameters and the behavior of the agent is also the main hindrance in the goal-oriented design of a behavior system. This paper presents a general approach to the self-regulation of dynamical systems so that the design problem is circumvented. We consider the controller (a neural net work) as the mediator for changes in the sensor values over time and define a dynamics for the parameters of the controller by maximizing the dynamical complexity of the sensorimotor loop under the condition that the consequences of the actions taken are still predictable. This very general principle is given a concrete mathematical formulation and is implemented in an extremely robust and versatile algorithm for the parameter dynamics of the controller. We consider two different applications, a mechanical device called the rocking stamper and the ODE simulations of a "snake" with five degrees of freedom. In these and many other examples studied we observed various behavior modes of high dynamical complexity.

al

DOI [BibTex]

DOI [BibTex]

2001


no image
Wing transmission for a micromechanical flying insect

Yan, J., Avadhanula, S., Birch, J., Dickinson, M., Sitti, M., Su, T., Fearing, R.

Journal of Micromechatronics, 1(3):221-237, Brill, 2001 (article)

pi

[BibTex]

2001


[BibTex]

1998


no image
Tele-nanorobotics using an atomic force microscope as a nanorobot and sensor

Sitti, M., Hashimoto, H.

Advanced Robotics, 13(4):417-436, Taylor & Francis, 1998 (article)

pi

[BibTex]

1998


[BibTex]


no image
In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor

Dwivedi, C., Pandey, I., Pandey, H., Patil, S., Mishra, S. B., Pandey, A. C., Zamboni, P., Ramteke, P. W., Singh, A. V.

Journal of Biomedical Materials Research Part A, 106(3):641-651, March (article)

Abstract
Abstract Diabetic wounds are susceptible to microbial infection. The treatment of these wounds requires a higher payload of growth factors. With this in mind, the strategy for this study was to utilize a novel payload comprising of Eudragit RL/RS 100 nanofibers carrying the bacterial inhibitor gentamicin sulfate (GS) in concert with recombinant human epidermal growth factor (rhEGF); an accelerator of wound healing. GS containing Eudragit was electrospun to yield nanofiber scaffolds, which were further modified by covalent immobilization of rhEGF to their surface. This novel fabricated nanoscaffold was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. The thermal behavior of the nanoscaffold was determined using thermogravimetric analysis and differential scanning calorimetry. In the in vitro antibacterial assays, the nanoscaffolds exhibited comparable antibacterial activity to pure gentemicin powder. In vivo work using female C57/BL6 mice, the nanoscaffolds induced faster wound healing activity in dorsal wounds compared to the control. The paradigm in this study presents a robust in vivo model to enhance the applicability of drug delivery systems in wound healing applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 641–651, 2018.

pi

link (url) DOI [BibTex]


link (url) DOI [BibTex]


no image
Robotics Research

Tong, Chi Hay, Furgale, Paul, Barfoot, Timothy D, Guizilini, Vitor, Ramos, Fabio, Chen, Yushan, T\uumová, Jana, Ulusoy, Alphan, Belta, Calin, Tenorth, Moritz, others

(article)

pi

[BibTex]

[BibTex]