Header logo is


2015


no image
Distributed Event-based State Estimation

Trimpe, S.

Max Planck Institute for Intelligent Systems, November 2015 (techreport)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor-actuator-agents observe a dynamic process and sporadically exchange their measurements and inputs over a bus network. Based on these data, each agent estimates the full state of the dynamic system, which may exhibit arbitrary inter-agent couplings. Local event-based protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. This event-based scheme is shown to mimic a centralized Luenberger observer design up to guaranteed bounds, and stability is proven in the sense of bounded estimation errors for bounded disturbances. The stability result extends to the distributed control system that results when the local state estimates are used for distributed feedback control. Simulation results highlight the benefit of the event-based approach over classical periodic ones in reducing communication requirements.

am ics

arXiv [BibTex]

2015


arXiv [BibTex]

2014


Thumb xl modeltransport
Model transport: towards scalable transfer learning on manifolds - supplemental material

Freifeld, O., Hauberg, S., Black, M. J.

(9), April 2014 (techreport)

Abstract
This technical report is complementary to "Model Transport: Towards Scalable Transfer Learning on Manifolds" and contains proofs, explanation of the attached video (visualization of bases from the body shape experiments), and high-resolution images of select results of individual reconstructions from the shape experiments. It is identical to the supplemental mate- rial submitted to the Conference on Computer Vision and Pattern Recognition (CVPR 2014) on November 2013.

ps

PDF [BibTex]