Header logo is


2016


no image
Predictive and Self Triggering for Event-based State Estimation

Trimpe, S.

In Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pages: 3098-3105, Las Vegas, NV, USA, December 2016 (inproceedings)

am ics

arXiv PDF DOI Project Page [BibTex]

2016


arXiv PDF DOI Project Page [BibTex]


no image
Qualitative User Reactions to a Hand-Clapping Humanoid Robot

Fitter, N. T., Kuchenbecker, K. J.

In Social Robotics: 8th International Conference, ICSR 2016, Kansas City, MO, USA, November 1-3, 2016 Proceedings, 9979, pages: 317-327, Lecture Notes in Artificial Intelligence, Springer International Publishing, November 2016, Oral presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Designing and Assessing Expressive Open-Source Faces for the Baxter Robot

Fitter, N. T., Kuchenbecker, K. J.

In Social Robotics: 8th International Conference, ICSR 2016, Kansas City, MO, USA, November 1-3, 2016 Proceedings, 9979, pages: 340-350, Lecture Notes in Artificial Intelligence, Springer International Publishing, November 2016, Oral presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Rhythmic Timing in Playful Human-Robot Social Motor Coordination

Fitter, N. T., Hawkes, D. T., Kuchenbecker, K. J.

In Social Robotics: 8th International Conference, ICSR 2016, Kansas City, MO, USA, November 1-3, 2016 Proceedings, 9979, pages: 296-305, Lecture Notes in Artificial Intelligence, Springer International Publishing, November 2016, Oral presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


Steering control of a water-running robot using an active tail
Steering control of a water-running robot using an active tail

Kim, H., Jeong, K., Sitti, M., Seo, T.

In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pages: 4945-4950, October 2016 (inproceedings)

Abstract
Many highly dynamic novel mobile robots have been developed being inspired by animals. In this study, we are inspired by a basilisk lizard's ability to run and steer on water surface for a hexapedal robot. The robot has an active tail with a circular plate, which the robot rotates to steer on water. We dynamically modeled the platform and conducted simulations and experiments on steering locomotion with a bang-bang controller. The robot can steer on water by rotating the tail, and the controlled steering locomotion is stable. The dynamic modelling approximates the robot's steering locomotion and the trends of the simulations and experiments are similar, although there are errors between the desired and actual angles. The robot's maneuverability on water can be improved through further research.

pi

DOI [BibTex]

DOI [BibTex]


no image
Using IMU Data to Demonstrate Hand-Clapping Games to a Robot

Fitter, N. T., Kuchenbecker, K. J.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 851 - 856, October 2016, Interactive presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
ProtonPack: A Visuo-Haptic Data Acquisition System for Robotic Learning of Surface Properties

Burka, A., Hu, S., Helgeson, S., Krishnan, S., Gao, Y., Hendricks, L. A., Darrell, T., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pages: 58-65, 2016, Oral presentation given by Burka (inproceedings)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Equipping the Baxter Robot with Human-Inspired Hand-Clapping Skills

Fitter, N. T., Kuchenbecker, K. J.

In Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pages: 105-112, 2016 (inproceedings)

hi

[BibTex]

[BibTex]


no image
Comparison of vibro-acoustic performance metrics in the design and optimization of stiffened composite fuselages

Serhat, G., Basdogan, I.

In Proceedings of International Congress and Exposition of Noise Control Engineering (INTER-NOISE), Hamburg, Germany, August 2016 (inproceedings)

Abstract
In this paper, a comparison of preliminary design methodologies for optimization of stiffened, fiber-reinforced composite fuselages for vibro-acoustic requirements is presented. Fuselage stiffness properties are modelled using lamination parameters and their effect on the vibro-acoustic performance is investigated using two different approaches. First method, only considers the structural model in order to explore the effect of design variables on fuselage vibrations. The simplified estimation of the acoustic behavior without considering fluid-structure interaction brings certain advantages such as reduced modelling effort and computational cost. In this case, the performance metric is chosen as equivalent radiated power (ERP) which is a well-known criterion in the prediction of structure-born noise. Second method, utilizes coupled vibro-acoustic models to predict the sound pressure levels (SPL) inside the fuselage. ERP is calculated both for bay panels and fuselage section and then compared with the SPL results. The response surfaces of each metric are determined as a function of lamination parameters and their overall difference is quantified. ERP approach proves its merit provided that a sufficiently accurate model is used. The results demonstrate the importance of the simplifications made in the modelling and the selection of analysis approach in vibro-acoustic design of fuselages.

hi

[BibTex]

[BibTex]


Targeting of cell mockups using sperm-shaped microrobots in vitro
Targeting of cell mockups using sperm-shaped microrobots in vitro

Khalil, I. S., Tabak, A. F., Hosney, A., Klingner, A., Shalaby, M., Abdel-Kader, R. M., Serry, M., Sitti, M.

In Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE International Conference on, pages: 495-501, July 2016 (inproceedings)

Abstract
Sperm-shaped microrobots are controlled under the influence of weak oscillating magnetic fields (milliTesla range) to selectively target cell mockups (i.e., gas bubbles with average diameter of 200 μm). The sperm-shaped microrobots are fabricated by electrospinning using a solution of polystyrene, dimethylformamide, and iron oxide nanoparticles. These nanoparticles are concentrated within the head of the microrobot, and hence enable directional control along external magnetic fields. The magnetic dipole moment of the microrobot is characterized (using the flip-time technique) to be 1.4×10-11 A.m2, at magnetic field of 28 mT. In addition, the morphology of the microrobot is characterized using Scanning Electron Microscopy images. The characterized parameters and morphology are used in the simulation of the locomotion mechanism of the microrobot to prove that its motion depends on breaking the time-reversal symmetry, rather than pulling with the magnetic field gradient. We experimentally demonstrate that the microrobot can controllably follow S-shaped, U-shaped, and square paths, and selectively target the cell mockups using image guidance and under the influence of the oscillating magnetic fields.

pi

DOI [BibTex]

DOI [BibTex]


Soft continuous microrobots with multiple intrinsic degrees of freedom
Soft continuous microrobots with multiple intrinsic degrees of freedom

Palagi, S., Mark, A. G., Melde, K., Zeng, H., Parmeggiani, C., Martella, D., Wiersma, D. S., Fischer, P.

In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2016 (inproceedings)

Abstract
One of the main challenges in the development of microrobots, i.e. robots at the sub-millimeter scale, is the difficulty of adopting traditional solutions for power, control and, especially, actuation. As a result, most current microrobots are directly manipulated by external fields, and possess only a few passive degrees of freedom (DOFs). We have reported a strategy that enables embodiment, remote powering and control of a large number of DOFs in mobile soft microrobots. These consist of photo-responsive materials, such that the actuation of their soft continuous body can be selectively and dynamically controlled by structured light fields. Here we use finite-element modelling to evaluate the effective number of DOFs that are addressable in our microrobots. We also demonstrate that by this flexible approach different actuation patterns can be obtained, and thus different locomotion performances can be achieved within the very same microrobot. The reported results confirm the versatility of the proposed approach, which allows for easy application-specific optimization and online reconfiguration of the microrobot's behavior. Such versatility will enable advanced applications of robotics and automation at the micro scale.

pf

DOI [BibTex]

DOI [BibTex]


Analysis of the magnetic torque on a tilted permanent magnet for drug delivery in capsule robots
Analysis of the magnetic torque on a tilted permanent magnet for drug delivery in capsule robots

Munoz, F., Alici, G., Zhou, H., Li, W., Sitti, M.

In Advanced Intelligent Mechatronics (AIM), 2016 IEEE International Conference on, pages: 1386-1391, July 2016 (inproceedings)

Abstract
In this paper, we present the analysis of the torque transmitted to a tilted permanent magnet that is to be embedded in a capsule robot to achieve targeted drug delivery. This analysis is carried out by using an analytical model and experimental results for a small cubic permanent magnet that is driven by an external magnetic system made of an array of arc-shaped permanent magnets (ASMs). Our experimental results, which are in agreement with the analytical results, show that the cubic permanent magnet can safely be actuated for inclinations lower than 75° without having to make positional adjustments in the external magnetic system. We have found that with further inclinations, the cubic permanent magnet to be embedded in a drug delivery mechanism may stall. When it stalls, the external magnetic system's position and orientation would have to be adjusted to actuate the cubic permanent magnet and the drug release mechanism. This analysis of the transmitted torque is helpful for the development of real-time control strategies for magnetically articulated devices.

pi

DOI [BibTex]

DOI [BibTex]


no image
Reproducing a Laser Pointer Dot on a Secondary Projected Screen

Hu, S., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pages: 1645-1650, 2016, Oral presentation given by Hu (inproceedings)

hi

[BibTex]

[BibTex]


Wireless actuator based on ultrasonic bubble streaming
Wireless actuator based on ultrasonic bubble streaming

Qiu, T., Palagi, S., Mark, A. G., Melde, K., Fischer, P.

In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2016 (inproceedings)

Abstract
Miniaturized actuators are a key element for the manipulation and automation at small scales. Here, we propose a new miniaturized actuator, which consists of an array of micro gas bubbles immersed in a fluid. Under ultrasonic excitation, the oscillation of micro gas bubbles results in acoustic streaming and provides a propulsive force that drives the actuator. The actuator was fabricated by lithography and fluidic streaming was observed under ultrasound excitation. Theoretical modelling and numerical simulations were carried out to show that lowing the surface tension results in a larger amplitude of the bubble oscillation, and thus leads to a higher propulsive force. Experimental results also demonstrate that the propulsive force increases 3.5 times when the surface tension is lowered by adding a surfactant. An actuator with a 4×4 mm 2 surface area provides a driving force of about 0.46 mN, suggesting that it is possible to be used as a wireless actuator for small-scale robots and medical instruments.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Effect of Aspect Ratio and Boundary Conditions on the Eigenfrequency Optimization of Composite Panels Using Lamination Parameters

Serhat, G., Basdogan, I.

In Proceedings of the ASMO UK International Conference on Numerical Optimisation Methods for Engineering Design, pages: 160–168, Munich, Germany, July 2016 (inproceedings)

Abstract
Eigenfrequency optimization of laminated composite panels is a common engineering problem. This process mostly involves designing stiffness properties of the structure. Optimal results can differ significantly depending on the values of the model parameters and the metrics used for the optimization. Building the know-how on this matter is crucial for choosing the appropriate design methodologies as well as validation and justification of prospective results. In this paper, effects of aspect ratio and boundary conditions on eigenfrequency optimization of composite panels by altering stiffness properties are investigated. Lamination parameters are chosen as design variables which are used in the modeling of stiffness tensors. This technique enables representation of overall stiffness characteristics and provides a convex design space. Fundamental frequency and difference between fundamental and second natural frequencies are maximized as design objectives. Optimization studies incorporating different models and responses are performed. Optimal lamination parameters and response values are provided for each case and the effects of model parameters on the solutions are quantified. The results indicate that trends of the optima change for different aspect ratio ranges and boundary conditions. Moreover, convergence occurs beyond certain critical values of the model parameters which may cause an optimization study to be redundant.

hi

[BibTex]

[BibTex]


Robust Gaussian Filtering using a Pseudo Measurement
Robust Gaussian Filtering using a Pseudo Measurement

Wüthrich, M., Garcia Cifuentes, C., Trimpe, S., Meier, F., Bohg, J., Issac, J., Schaal, S.

In Proceedings of the American Control Conference (ACC), Boston, MA, USA, July 2016 (inproceedings)

Abstract
Most widely-used state estimation algorithms, such as the Extended Kalman Filter and the Unscented Kalman Filter, belong to the family of Gaussian Filters (GF). Unfortunately, GFs fail if the measurement process is modelled by a fat-tailed distribution. This is a severe limitation, because thin-tailed measurement models, such as the analytically-convenient and therefore widely-used Gaussian distribution, are sensitive to outliers. In this paper, we show that mapping the measurements into a specific feature space enables any existing GF algorithm to work with fat-tailed measurement models. We find a feature function which is optimal under certain conditions. Simulation results show that the proposed method allows for robust filtering in both linear and nonlinear systems with measurements contaminated by fat-tailed noise.

am ics

Web link (url) DOI Project Page [BibTex]

Web link (url) DOI Project Page [BibTex]


no image
Multi-objective optimization of stiffened, fiber-reinforced composite fuselages for mechanical and vibro-acoustic requirements

Serhat, G., Faria, T. G., Basdogan, I.

In Proceedings of AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Washington, USA, June 2016 (inproceedings)

Abstract
In this paper, a preliminary design methodology for optimization of stiffened, fiber-reinforced composite fuselages for combined mechanical and vibro-acoustic requirements is presented. Laminate stiffness distributions are represented using the method called lamination parameters which is known to provide a convex solution space. Single-objective and multi-objective optimization studies are carried out in order to find optimal stiffness distributions. Performance metrics for acoustical behavior are chosen as maximum fundamental frequency and minimum equivalent radiated power. The mechanical performance metric is chosen as the maximum stiffness. The results show that the presented methodology works effectively and it can be used to improve load-carrying and acoustical performances simultaneously.

hi

DOI [BibTex]

DOI [BibTex]


Active Uncertainty Calibration in Bayesian ODE Solvers
Active Uncertainty Calibration in Bayesian ODE Solvers

Kersting, H., Hennig, P.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 309-318, (Editors: Ihler, A. and Janzing, D.), AUAI Press, June 2016 (conference)

Abstract
There is resurging interest, in statistics and machine learning, in solvers for ordinary differential equations (ODEs) that return probability measures instead of point estimates. Recently, Conrad et al.~introduced a sampling-based class of methods that are `well-calibrated' in a specific sense. But the computational cost of these methods is significantly above that of classic methods. On the other hand, Schober et al.~pointed out a precise connection between classic Runge-Kutta ODE solvers and Gaussian filters, which gives only a rough probabilistic calibration, but at negligible cost overhead. By formulating the solution of ODEs as approximate inference in linear Gaussian SDEs, we investigate a range of probabilistic ODE solvers, that bridge the trade-off between computational cost and probabilistic calibration, and identify the inaccurate gradient measurement as the crucial source of uncertainty. We propose the novel filtering-based method Bayesian Quadrature filtering (BQF) which uses Bayesian quadrature to actively learn the imprecision in the gradient measurement by collecting multiple gradient evaluations.

ei pn

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


Automatic LQR Tuning Based on Gaussian Process Global Optimization
Automatic LQR Tuning Based on Gaussian Process Global Optimization

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 270-277, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree- of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four- dimensional tuning problems highlight the method’s potential for automatic controller tuning on robotic platforms.

am ics pn

Video - Automatic LQR Tuning Based on Gaussian Process Global Optimization - ICRA 2016 Video - Automatic Controller Tuning on a Two-legged Robot PDF DOI Project Page [BibTex]

Video - Automatic LQR Tuning Based on Gaussian Process Global Optimization - ICRA 2016 Video - Automatic Controller Tuning on a Two-legged Robot PDF DOI Project Page [BibTex]


Depth-based Object Tracking Using a Robust Gaussian Filter
Depth-based Object Tracking Using a Robust Gaussian Filter

Issac, J., Wüthrich, M., Garcia Cifuentes, C., Bohg, J., Trimpe, S., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
We consider the problem of model-based 3D- tracking of objects given dense depth images as input. Two difficulties preclude the application of a standard Gaussian filter to this problem. First of all, depth sensors are characterized by fat-tailed measurement noise. To address this issue, we show how a recently published robustification method for Gaussian filters can be applied to the problem at hand. Thereby, we avoid using heuristic outlier detection methods that simply reject measurements if they do not match the model. Secondly, the computational cost of the standard Gaussian filter is prohibitive due to the high-dimensional measurement, i.e. the depth image. To address this problem, we propose an approximation to reduce the computational complexity of the filter. In quantitative experiments on real data we show how our method clearly outperforms the standard Gaussian filter. Furthermore, we compare its performance to a particle-filter-based tracking method, and observe comparable computational efficiency and improved accuracy and smoothness of the estimates.

am ics

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page [BibTex]

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page [BibTex]


Sperm-shaped magnetic microrobots: Fabrication using electrospinning, modeling, and characterization
Sperm-shaped magnetic microrobots: Fabrication using electrospinning, modeling, and characterization

Khalil, I. S., Tabak, A. F., Hosney, A., Mohamed, A., Klingner, A., Ghoneima, M., Sitti, M.

In Robotics and Automation (ICRA), 2016 IEEE International Conference on, pages: 1939-1944, May 2016 (inproceedings)

Abstract
We use electrospinning to fabricate sperm-shaped magnetic microrobots with a range of diameters from 50 μm to 500 μm. The variables of the electrospinning operation (voltage, concentration of the solution, dynamic viscosity, and distance between the syringe needle and collector) to achieve beading effect are determined. This beading effect allows us to fabricate microrobots with similar morphology to that of sperm cells. The bead and the ultra-fine fiber resemble the morphology of the head and tail of the sperm cell, respectively. We incorporate iron oxide nanoparticles to the head of the sperm-shaped microrobot to provide a magnetic dipole moment. This dipole enables directional control under the influence of external magnetic fields. We also apply weak (less than 2 mT) oscillating magnetic fields to exert a magnetic torque on the magnetic head, and generate planar flagellar waves and flagellated swim. The average speed of the sperm-shaped microrobot is calculated to be 0.5 body lengths per second and 1 body lengths per second at frequencies of 5 Hz and 10 Hz, respectively. We also develop a model of the microrobot using elastohydrodynamics approach and Timoshenko-Rayleigh beam theory, and find good agreement with the experimental results.

pi

DOI [BibTex]

DOI [BibTex]


no image
Batch Bayesian Optimization via Local Penalization

González, J., Dai, Z., Hennig, P., Lawrence, N.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 648-657, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C.), May 2016 (conference)

ei pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Communication Rate Analysis for Event-based State Estimation

(Best student paper finalist)

Ebner, S., Trimpe, S.

In Proceedings of the 13th International Workshop on Discrete Event Systems, May 2016 (inproceedings)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


Auxetic Metamaterial Simplifies Soft Robot Design
Auxetic Metamaterial Simplifies Soft Robot Design

Mark, A. G., Palagi, S., Qiu, T., Fischer, P.

In 2016 IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 4951-4956, May 2016 (inproceedings)

Abstract
Soft materials are being adopted in robotics in order to facilitate biomedical applications and in order to achieve simpler and more capable robots. One route to simplification is to design the robot's body using `smart materials' that carry the burden of control and actuation. Metamaterials enable just such rational design of the material properties. Here we present a soft robot that exploits mechanical metamaterials for the intrinsic synchronization of two passive clutches which contact its travel surface. Doing so allows it to move through an enclosed passage with an inchworm motion propelled by a single actuator. Our soft robot consists of two 3D-printed metamaterials that implement auxetic and normal elastic properties. The design, fabrication and characterization of the metamaterials are described. In addition, a working soft robot is presented. Since the synchronization mechanism is a feature of the robot's material body, we believe that the proposed design will enable compliant and robust implementations that scale well with miniaturization.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Probabilistic Approximate Least-Squares
Probabilistic Approximate Least-Squares

Bartels, S., Hennig, P.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 676-684, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C. ), May 2016 (conference)

Abstract
Least-squares and kernel-ridge / Gaussian process regression are among the foundational algorithms of statistics and machine learning. Famously, the worst-case cost of exact nonparametric regression grows cubically with the data-set size; but a growing number of approximations have been developed that estimate good solutions at lower cost. These algorithms typically return point estimators, without measures of uncertainty. Leveraging recent results casting elementary linear algebra operations as probabilistic inference, we propose a new approximate method for nonparametric least-squares that affords a probabilistic uncertainty estimate over the error between the approximate and exact least-squares solution (this is not the same as the posterior variance of the associated Gaussian process regressor). This allows estimating the error of the least-squares solution on a subset of the data relative to the full-data solution. The uncertainty can be used to control the computational effort invested in the approximation. Our algorithm has linear cost in the data-set size, and a simple formal form, so that it can be implemented with a few lines of code in programming languages with linear algebra functionality.

ei pn

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
Deep Learning for Tactile Understanding From Visual and Haptic Data

Gao, Y., Hendricks, L. A., Kuchenbecker, K. J., Darrell, T.

In Proceedings of the IEEE International Conference on Robotics and Automation, pages: 536-543, May 2016, Oral presentation given by Gao (inproceedings)

hi

[BibTex]

[BibTex]


no image
Robust Tactile Perception of Artificial Tumors Using Pairwise Comparisons of Sensor Array Readings

Hui, J. C. T., Block, A. E., Taylor, C. J., Kuchenbecker, K. J.

In Proceedings of the IEEE Haptics Symposium, pages: 305-312, Philadelphia, Pennsylvania, USA, April 2016, Oral presentation given by Hui (inproceedings)

hi

[BibTex]

[BibTex]


no image
Data-Driven Comparison of Four Cutaneous Displays for Pinching Palpation in Robotic Surgery

Brown, J. D., Ibrahim, M., Chase, E. D. Z., Pacchierotti, C., Kuchenbecker, K. J.

In Proceedings of the IEEE Haptics Symposium, pages: 147-154, Philadelphia, Pennsylvania, USA, April 2016, Oral presentation given by Brown (inproceedings)

hi

[BibTex]

[BibTex]


Multisensory Robotic Therapy through Motion Capture and Imitation for Children with ASD
Multisensory Robotic Therapy through Motion Capture and Imitation for Children with ASD

Burns, R., Nizambad, S., Park, C. H., Jeon, M., Howard, A.

Proceedings of the American Society of Engineering Education, Mid-Atlantic Section, Spring Conference, April 2016 (conference)

Abstract
It is known that children with autism have difficulty with emotional communication. As the population of children with autism increases, it is crucial we create effective therapeutic programs that will improve their communication skills. We present an interactive robotic system that delivers emotional and social behaviors for multi­sensory therapy for children with autism spectrum disorders. Our framework includes emotion­-based robotic gestures and facial expressions, as well as tracking and understanding the child’s responses through Kinect motion capture.

hi

link (url) [BibTex]

link (url) [BibTex]


no image
Design and Implementation of a Visuo-Haptic Data Acquisition System for Robotic Learning of Surface Properties

Burka, A., Hu, S., Helgeson, S., Krishnan, S., Gao, Y., Hendricks, L. A., Darrell, T., Kuchenbecker, K. J.

In Proceedings of the IEEE Haptics Symposium, pages: 350-352, April 2016, Work-in-progress paper. Poster presentation given by Burka (inproceedings)

hi

Project Page [BibTex]

Project Page [BibTex]


Towards Photo-Induced Swimming: Actuation of Liquid Crystalline  Elastomer in Water
Towards Photo-Induced Swimming: Actuation of Liquid Crystalline Elastomer in Water

cerretti, G., Martella, D., Zeng, H., Parmeggiani, C., Palagi, S., Mark, A. G., Melde, K., Qiu, T., Fischer, P., Wiersma, D.

In Proc. of SPIE 9738, pages: Laser 3D Manufacturing III, 97380T, April 2016 (inproceedings)

Abstract
Liquid Crystalline Elastomers (LCEs) are very promising smart materials that can be made sensitive to different external stimuli, such as heat, pH, humidity and light, by changing their chemical composition. In this paper we report the implementation of a nematically aligned LCE actuator able to undergo large light-induced deformations. We prove that this property is still present even when the actuator is submerged in fresh water. Thanks to the presence of azo-dye moieties, capable of going through a reversible trans-cis photo-isomerization, and by applying light with two different wavelengths we managed to control the bending of such actuator in the liquid environment. The reported results represent the first step towards swimming microdevices powered by light.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Robust calibration marker detection in powder bed images from laser beam melting processes

zur Jacobsmühlen, J., Achterhold, J., Kleszczynski, S., Witt, G., Merhof, D.

In 2016 IEEE International Conference on Industrial Technology (ICIT), pages: 910-915, March 2016 (inproceedings)

ev

DOI [BibTex]

DOI [BibTex]


no image
Psychophysical Power Optimization of Friction Modulation for Tactile Interfaces

Sednaoui, T., Vezzoli, E., Gueorguiev, D., Amberg, M., Chappaz, C., Lemaire-Semail, B.

In Haptics: Perception, Devices, Control, and Applications, pages: 354-362, Springer International Publishing, Cham, 2016 (inproceedings)

Abstract
Ultrasonic vibration and electrovibration can modulate the friction between a surface and a sliding finger. The power consumption of these devices is critical to their integration in modern mobile devices such as smartphones. This paper presents a simple control solution to reduce up to 68.8 {\%} this power consumption by taking advantage of the human perception limits.

hi

[BibTex]

[BibTex]


Effect of Waveform in Haptic Perception of Electrovibration on Touchscreens
Effect of Waveform in Haptic Perception of Electrovibration on Touchscreens

Vardar, Y., Güçlü, B., Basdogan, C.

In Haptics: Perception, Devices, Control, and Applications, pages: 190-203, Springer International Publishing, Cham, 2016 (inproceedings)

Abstract
The perceived intensity of electrovibration can be altered by modulating the amplitude, frequency, and waveform of the input voltage signal applied to the conductive layer of a touchscreen. Even though the effect of the first two has been already investigated for sinusoidal signals, we are not aware of any detailed study investigating the effect of the waveform on our haptic perception in the domain of electrovibration. This paper investigates how input voltage waveform affects our haptic perception of electrovibration on touchscreens. We conducted absolute detection experiments using square wave and sinusoidal input signals at seven fundamental frequencies (15, 30, 60, 120, 240, 480 and 1920 Hz). Experimental results depicted the well-known U-shaped tactile sensitivity across frequencies. However, the sensory thresholds were lower for the square wave than the sinusoidal wave at fundamental frequencies less than 60 Hz while they were similar at higher frequencies. Using an equivalent circuit model of a finger-touchscreen system, we show that the sensation difference between the waveforms at low fundamental frequencies can be explained by frequency-dependent electrical properties of human skin and the differential sensitivity of mechanoreceptor channels to individual frequency components in the electrostatic force. As a matter of fact, when the electrostatic force waveforms are analyzed in the frequency domain based on human vibrotactile sensitivity data from the literature [15], the electrovibration stimuli caused by square-wave input signals at all the tested frequencies in this study are found to be detected by the Pacinian psychophysical channel.

hi

vardar_eurohaptics_2016 [BibTex]

vardar_eurohaptics_2016 [BibTex]


no image
Direct Visual-Inertial Odometry with Stereo Cameras

Usenko, V., Engel, J., Stueckler, J., Cremers, D.

In IEEE International Conference on Robotics and Automation (ICRA), 2016 (inproceedings)

ev

[BibTex]

[BibTex]


no image
CPA-SLAM: Consistent Plane-Model Alignment for Direct RGB-D SLAM

Ma, L., Kerl, C., Stueckler, J., Cremers, D.

In IEEE International Conference on Robotics and Automation (ICRA), 2016 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Unsupervised Learning of Shape-Motion Patterns for Objects in Urban Street Scenes

Klostermann, D., Osep, A., Stueckler, J., Leibe, B.

In British Machine Vision Conference (BMVC), 2016 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Cell patterning in a hydrogel using optically induced dielectrophoresis

Hu, W., Ishii, K., Ohta, A. T.

In Optical MEMS and Nanophotonics (OMN), 2016 International Conference on, pages: 1-2, 2016 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Scene Flow Propagation for Semantic Mapping and Object Discovery in Dynamic Street Scenes

Kochanov, D., Osep, A., Stueckler, J., Leibe, B.

In IEEE/RSJ Int. Conference on Intelligent Robots and Systems, IROS, 2016 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Joint Object Pose Estimation and Shape Reconstruction in Urban Street Scenes Using 3D Shape Priors

Engelmann, F., Stueckler, J., Leibe, B.

In Proc. of the German Conference on Pattern Recognition (GCPR), 2016 (inproceedings)

ev

[BibTex]

[BibTex]

2014


Geckogripper: A soft, inflatable robotic gripper using gecko-inspired elastomer micro-fiber adhesives
Geckogripper: A soft, inflatable robotic gripper using gecko-inspired elastomer micro-fiber adhesives

Song, S., Majidi, C., Sitti, M.

In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages: 4624-4629, September 2014 (inproceedings)

Abstract
This paper proposes GeckoGripper, a novel soft, inflatable gripper based on the controllable adhesion mechanism of gecko-inspired micro-fiber adhesives, to pick-and-place complex and fragile non-planar or planar parts serially or in parallel. Unlike previous fibrillar structures that use peel angle to control the manipulation of parts, we developed an elastomer micro-fiber adhesive that is fabricated on a soft, flexible membrane, increasing the adaptability to non-planar three-dimensional (3D) geometries and controllability in adhesion. The adhesive switching ratio (the ratio between the maximum and minimum adhesive forces) of the developed gripper was measured to be around 204, which is superior to previous works based on peel angle-based release control methods. Adhesion control mechanism based on the stretch of the membrane and superior adaptability to non-planar 3D geometries enable the micro-fibers to pick-and-place various 3D parts as shown in demonstrations.

pi

DOI [BibTex]

2014


DOI [BibTex]


Probabilistic Progress Bars
Probabilistic Progress Bars

Kiefel, M., Schuler, C., Hennig, P.

In Conference on Pattern Recognition (GCPR), 8753, pages: 331-341, Lecture Notes in Computer Science, (Editors: Jiang, X., Hornegger, J., and Koch, R.), Springer, GCPR, September 2014 (inproceedings)

Abstract
Predicting the time at which the integral over a stochastic process reaches a target level is a value of interest in many applications. Often, such computations have to be made at low cost, in real time. As an intuitive example that captures many features of this problem class, we choose progress bars, a ubiquitous element of computer user interfaces. These predictors are usually based on simple point estimators, with no error modelling. This leads to fluctuating behaviour confusing to the user. It also does not provide a distribution prediction (risk values), which are crucial for many other application areas. We construct and empirically evaluate a fast, constant cost algorithm using a Gauss-Markov process model which provides more information to the user.

ei ps pn

website+code pdf DOI [BibTex]

website+code pdf DOI [BibTex]


no image
Automatic Skill Evaluation for a Needle Passing Task in Robotic Surgery

Leung, S., Kuchenbecker, K. J.

In Proc. IROS Workshop on the Role of Human Sensorimotor Control in Robotic Surgery, Chicago, Illinois, sep 2014, Poster presentation given by Kuchenbecker. Best Poster Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
A Data-driven Approach to Remote Tactile Interaction: From a BioTac Sensor to Any Fingertip Cutaneous Device

Pacchierotti, C., Prattichizzo, D., Kuchenbecker, K. J.

In Haptics: Neuroscience, Devices, Modeling, and Applications, Proc. EuroHaptics, Part I, 8618, pages: 418-424, Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, June 2014, Poster presentation given by Pacchierotti in Versailles, France (inproceedings)

hi

[BibTex]

[BibTex]


no image
Evaluating the BioTac’s Ability to Detect and Characterize Lumps in Simulated Tissue

Hui, J. C. T., Kuchenbecker, K. J.

In Haptics: Neuroscience, Devices, Modeling, and Applications, Proc. EuroHaptics, Part II, 8619, pages: 295-302, Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, June 2014, Poster presentation given by Hui in Versailles, France (inproceedings)

hi

[BibTex]

[BibTex]


Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics
Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics

Hennig, P., Hauberg, S.

In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, 33, pages: 347-355, JMLR: Workshop and Conference Proceedings, (Editors: S Kaski and J Corander), Microtome Publishing, Brookline, MA, AISTATS, April 2014 (inproceedings)

Abstract
We study a probabilistic numerical method for the solution of both boundary and initial value problems that returns a joint Gaussian process posterior over the solution. Such methods have concrete value in the statistics on Riemannian manifolds, where non-analytic ordinary differential equations are involved in virtually all computations. The probabilistic formulation permits marginalising the uncertainty of the numerical solution such that statistics are less sensitive to inaccuracies. This leads to new Riemannian algorithms for mean value computations and principal geodesic analysis. Marginalisation also means results can be less precise than point estimates, enabling a noticeable speed-up over the state of the art. Our approach is an argument for a wider point that uncertainty caused by numerical calculations should be tracked throughout the pipeline of machine learning algorithms.

ei ps pn

pdf Youtube Supplements Project page link (url) [BibTex]

pdf Youtube Supplements Project page link (url) [BibTex]


no image
Analyzing Human High-Fives to Create an Effective High-Fiving Robot

Fitter, N. T., Kuchenbecker, K. J.

In Proc. ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages: 156-157, Bielefeld, Germany, March 2014, Poster presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Dynamic Modeling and Control of Voice-Coil Actuators for High-Fidelity Display of Haptic Vibrations

McMahan, W., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 115-122, Houston, Texas, USA, February 2014, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
A Wearable Device for Controlling a Robot Gripper With Fingertip Contact, Pressure, Vibrotactile, and Grip Force Feedback

Pierce, R. M., Fedalei, E. A., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 19-25, Houston, Texas, USA, February 2014, Oral presentation given by Pierce (inproceedings)

hi

[BibTex]

[BibTex]