Header logo is


2006


Thumb xl toc image
Chiral molecules split light: Reflection and refraction in a chiral liquid

Ghosh, A., Fischer, P.

PHYSICAL REVIEW LETTERS, 97(17), 2006, Featured highlight ‘Fundamental optical physics: Refraction’ Nature Photonics, Nov. 2006. (article)

Abstract
A light beam changes direction as it enters a liquid at an angle from another medium, such as air. Should the liquid contain molecules that lack mirror symmetry, then it has been predicted by Fresnel that the light beam will not only change direction, but will actually split into two separate beams with a small difference in the respective angles of refraction. Here we report the observation of this phenomenon. We also demonstrate that the angle of reflection does not equal the angle of incidence in a chiral medium. Unlike conventional optical rotation, which depends on the path-length through the sample, the reported reflection and refraction phenomena arise within a few wavelengths at the interface and thereby suggest a new approach to polarimetry that can be used in microfluidic volumes.

Featured highlight ‘Fundamental optical physics: Refraction’ Nature Photonics, Nov. 2006.

pf

DOI [BibTex]

2006


DOI [BibTex]


Thumb xl toc image
Direct chiral discrimination in NMR spectroscopy

Buckingham, A., Fischer, P.

CHEMICAL PHYSICS, 324(1):111-116, 2006 (article)

Abstract
Conventional nuclear magnetic resonance spectroscopy is unable to distinguish between the two mirror-image forms (enantiomers) of a chiral molecule. This is because the NMR spectrum is determined by the chemical shifts and spin-spin coupling constants which - in the absence of a chiral solvent - are identical for the two enantiomers. We discuss how chirality may nevertheless be directly detected in liquid-state NMR spectroscopy: In a chiral molecule, the rotating nuclear magnetic moment induces an electric dipole moment in the direction perpendicular to itself and to the permanent magnetic field of the spectrometer. We present computations of the precessing electric polarization following a pi/2 pulse. Our estimates indicate that the electric polarization should be detectable in favourable cases. We also predict that application of an electrostatic field induces a chirally sensitive magnetization oscillating in the direction of the permanent magnetic field. We show that the electric-field-perturbed chemical shift tensor, the nuclear magnetic shielding polarizability, underlies these chiral NMR effects. (c) 2005 Elsevier B.V. All rights reserved.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Ring-resonator-based frequency-domain optical activity measurements of a chiral liquid

Vollmer, F., Fischer, P.

OPTICS LETTERS, 31(4):453-455, 2006 (article)

Abstract
Chiral liquids rotate the plane of polarization of linearly polarized light and are therefore optically active. Here we show that optical rotation can be observed in the frequency domain. A chiral liquid introduced in a fiber-loop ring resonator that supports left and right circularly polarized modes gives rise to relative frequency shifts that are a direct measure of the liquid's circular birefringence and hence of its optical activity. The effect is in principle not diminished if the circumference of the ring is reduced. The technique is similarly applicable to refractive index and linear birefringence measurements. (c) 2006 Optical Society of America.

pf

DOI [BibTex]


Thumb xl toc image
Sign of the refractive index in a gain medium with negative permittivity and permeability

Chen, Y., Fischer, P., Wise, F.

JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 23(1):45-50, 2006 (article)

Abstract
We show how the sign of the refractive index in any medium may be derived using a rigorous analysis based on Einstein causality. In particular, we consider left-handed materials, i.e., media that have negative permittivities and permeabilities at the frequency of interest. We find that the consideration of gain in such media can give rise to a positive refractive index. (c) 2006 Optical Society of America.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl neuralcomp
Bayesian population decoding of motor cortical activity using a Kalman filter

Wu, W., Gao, Y., Bienenstock, E., Donoghue, J. P., Black, M. J.

Neural Computation, 18(1):80-118, 2006 (article)

Abstract
Effective neural motor prostheses require a method for decoding neural activity representing desired movement. In particular, the accurate reconstruction of a continuous motion signal is necessary for the control of devices such as computer cursors, robots, or a patient's own paralyzed limbs. For such applications, we developed a real-time system that uses Bayesian inference techniques to estimate hand motion from the firing rates of multiple neurons. In this study, we used recordings that were previously made in the arm area of primary motor cortex in awake behaving monkeys using a chronically implanted multielectrode microarray. Bayesian inference involves computing the posterior probability of the hand motion conditioned on a sequence of observed firing rates; this is formulated in terms of the product of a likelihood and a prior. The likelihood term models the probability of firing rates given a particular hand motion. We found that a linear gaussian model could be used to approximate this likelihood and could be readily learned from a small amount of training data. The prior term defines a probabilistic model of hand kinematics and was also taken to be a linear gaussian model. Decoding was performed using a Kalman filter, which gives an efficient recursive method for Bayesian inference when the likelihood and prior are linear and gaussian. In off-line experiments, the Kalman filter reconstructions of hand trajectory were more accurate than previously reported results. The resulting decoding algorithm provides a principled probabilistic model of motor-cortical coding, decodes hand motion in real time, provides an estimate of uncertainty, and is straightforward to implement. Additionally the formulation unifies and extends previous models of neural coding while providing insights into the motor-cortical code.

ps

pdf preprint pdf from publisher abstract [BibTex]

pdf preprint pdf from publisher abstract [BibTex]

2003


Thumb xl hedvig
Learning the statistics of people in images and video

Sidenbladh, H., Black, M. J.

International Journal of Computer Vision, 54(1-3):183-209, August 2003 (article)

Abstract
This paper address the problems of modeling the appearance of humans and distinguishing human appearance from the appearance of general scenes. We seek a model of appearance and motion that is generic in that it accounts for the ways in which people's appearance varies and, at the same time, is specific enough to be useful for tracking people in natural scenes. Given a 3D model of the person projected into an image we model the likelihood of observing various image cues conditioned on the predicted locations and orientations of the limbs. These cues are taken to be steered filter responses corresponding to edges, ridges, and motion-compensated temporal differences. Motivated by work on the statistics of natural scenes, the statistics of these filter responses for human limbs are learned from training images containing hand-labeled limb regions. Similarly, the statistics of the filter responses in general scenes are learned to define a “background” distribution. The likelihood of observing a scene given a predicted pose of a person is computed, for each limb, using the likelihood ratio between the learned foreground (person) and background distributions. Adopting a Bayesian formulation allows cues to be combined in a principled way. Furthermore, the use of learned distributions obviates the need for hand-tuned image noise models and thresholds. The paper provides a detailed analysis of the statistics of how people appear in scenes and provides a connection between work on natural image statistics and the Bayesian tracking of people.

ps

pdf pdf from publisher code DOI [BibTex]

2003


pdf pdf from publisher code DOI [BibTex]


Thumb xl delatorreijcvteaser
A framework for robust subspace learning

De la Torre, F., Black, M. J.

International Journal of Computer Vision, 54(1-3):117-142, August 2003 (article)

Abstract
Many computer vision, signal processing and statistical problems can be posed as problems of learning low dimensional linear or multi-linear models. These models have been widely used for the representation of shape, appearance, motion, etc., in computer vision applications. Methods for learning linear models can be seen as a special case of subspace fitting. One draw-back of previous learning methods is that they are based on least squares estimation techniques and hence fail to account for “outliers” which are common in realistic training sets. We review previous approaches for making linear learning methods robust to outliers and present a new method that uses an intra-sample outlier process to account for pixel outliers. We develop the theory of Robust Subspace Learning (RSL) for linear models within a continuous optimization framework based on robust M-estimation. The framework applies to a variety of linear learning problems in computer vision including eigen-analysis and structure from motion. Several synthetic and natural examples are used to develop and illustrate the theory and applications of robust subspace learning in computer vision.

ps

pdf code pdf from publisher Project Page [BibTex]

pdf code pdf from publisher Project Page [BibTex]


Thumb xl ijcvcoverhd
Guest editorial: Computational vision at Brown

Black, M. J., Kimia, B.

International Journal of Computer Vision, 54(1-3):5-11, August 2003 (article)

ps

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Thumb xl cviu91teaser
Robust parameterized component analysis: Theory and applications to 2D facial appearance models

De la Torre, F., Black, M. J.

Computer Vision and Image Understanding, 91(1-2):53-71, July 2003 (article)

Abstract
Principal component analysis (PCA) has been successfully applied to construct linear models of shape, graylevel, and motion in images. In particular, PCA has been widely used to model the variation in the appearance of people's faces. We extend previous work on facial modeling for tracking faces in video sequences as they undergo significant changes due to facial expressions. Here we consider person-specific facial appearance models (PSFAM), which use modular PCA to model complex intra-person appearance changes. Such models require aligned visual training data; in previous work, this has involved a time consuming and error-prone hand alignment and cropping process. Instead, the main contribution of this paper is to introduce parameterized component analysis to learn a subspace that is invariant to affine (or higher order) geometric transformations. The automatic learning of a PSFAM given a training image sequence is posed as a continuous optimization problem and is solved with a mixture of stochastic and deterministic techniques achieving sub-pixel accuracy. We illustrate the use of the 2D PSFAM model with preliminary experiments relevant to applications including video-conferencing and avatar animation.

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl toc image
New electro-optic effect: Sum-frequency generation from optically active liquids in the presence of a dc electric field

Fischer, P., Buckingham, A., Beckwitt, K., Wiersma, D., Wise, F.

PHYSICAL REVIEW LETTERS, 91(17), 2003 (article)

Abstract
We report the observation of sum-frequency signals that depend linearly on an applied electrostatic field and that change sign with the handedness of an optically active solute. This recently predicted chiral electro-optic effect exists in the electric-dipole approximation. The static electric field gives rise to an electric-field-induced sum-frequency signal (an achiral third-order process) that interferes with the chirality-specific sum-frequency at second order. The cross-terms linear in the electrostatic field constitute the effect and may be used to determine the absolute sign of second- and third-order nonlinear-optical susceptibilities in isotropic media.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Chiral and achiral contributions to sum-frequency generation from optically active solutions of binaphthol

Fischer, P., Wise, F., Albrecht, A.

JOURNAL OF PHYSICAL CHEMISTRY A, 107(40):8232-8238, 2003 (article)

Abstract
The nonlinear sum- and difference-frequency generation spectroscopies can be probes of molecular chirality in optically active systems. We present a tensorial analysis of the chirality-specific electric-dipolar sum-frequency-generation susceptibility and the achiral electric-quadrupolar and magnetic-dipolar nonlinearities at second order in isotropic media. The chiral and achiral contributions to the sum-frequency signal from the bulk of optically active solutions of 1,1'-bi-2-naphthol (2,2'-dehydroxy-1,1'-binaphthyl) can be distinguished, and the former dominates. Ab initio computations reveal the dramatic resonance enhancement that the isotropic component of the electric-dipolar three-wave mixing hyperpolarizability experiences. Away from resonance its magnitude rapidly decreases, as-unlike the vector component-it is zero in the static limit. The dispersion of the first hyperpolarizability is computed by a configuration interaction singles sum-over-states approach with explicit regard to the Franck-Condon active vibrational substructure for all resonant electronic states.

pf

DOI [BibTex]

DOI [BibTex]

2000


Thumb xl ijcv2000teaser
Probabilistic detection and tracking of motion boundaries

Black, M. J., Fleet, D. J.

Int. J. of Computer Vision, 38(3):231-245, July 2000 (article)

Abstract
We propose a Bayesian framework for representing and recognizing local image motion in terms of two basic models: translational motion and motion boundaries. Motion boundaries are represented using a non-linear generative model that explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We represent the posterior probability distribution over the model parameters given the image data using discrete samples. This distribution is propagated over time using a particle filtering algorithm. To efficiently represent such a high-dimensional space we initialize samples using the responses of a low-level motion discontinuity detector. The formulation and computational model provide a general probabilistic framework for motion estimation with multiple, non-linear, models.

ps

pdf pdf from publisher Video [BibTex]

2000


pdf pdf from publisher Video [BibTex]


Thumb xl toc image
Phenomenological damping in optical response tensors

Buckingham, A., Fischer, P.

PHYSICAL REVIEW A, 61(3), 2000 (article)

Abstract
Although perturbation theory applied to the optical response of a molecule or material system is only strictly valid far from resonances, it is often applied to ``near-resonance{''} conditions by means of complex energies incorporating damping. Inconsistent signs of the damping in optical response tensors have appeared in the recent literature, as have errors in the treatment of the perturbation by a static held. The ``equal-sign{''} convention used in a recent publication yields an unphysical material response, and Koroteev's intimation that linear electro-optical circular dichroism may exist in an optically active liquid under resonance conditions is also flawed. We show that the isotropic part of the Pockels tensor vanishes.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Ab initio investigation of the sum-frequency hyperpolarizability of small chiral molecules

Champagne, B., Fischer, P., Buckingham, A.

CHEMICAL PHYSICS LETTERS, 331(1):83-88, 2000 (article)

Abstract
Using a sum-over-states procedure based on configuration interaction singles /6-311++G{*}{*}, we have computed the sum-frequency hyperpolarizability beta (ijk)(-3 omega; 2 omega, omega) Of two small chiral molecules, R-monofluoro-oxirane and R-(+)-propylene oxide. Excitation energies were scaled to fit experimental UV-absorption data and checked with ab initio values from time-dependent density functional theory. The isotropic part of the computed hyperpolarizabilities, beta(-3 omega; 2 omega, omega), is much smaller than that reported previously from sum-frequency generation experiments on aqueous solutions of arabinose. Comparison is made with a single-centre chiral model. (C) 2000 Elsevier Science B.V. All rights reserved.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Three-wave mixing in chiral liquids

Fischer, P., Wiersma, D., Righini, R., Champagne, B., Buckingham, A.

PHYSICAL REVIEW LETTERS, 85(20):4253-4256, 2000 (article)

Abstract
Second-order nonlinear optical frequency conversion in isotropic systems is only dipole allowed for sum- and difference-frequency generation in chiral media. We develop a single-center chiral model of the three-wave mixing (sum:frequency generation) nonlinearity and estimate its magnitude. We also report results from ab initio calculations and from three- and four-wave mixing experiments in support of the theoretical estimates. We show that the second-order susceptibility in chiral liquids is much smaller than previously thought.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl bildschirmfoto 2012 12 06 um 09.22.34
Design and use of linear models for image motion analysis

Fleet, D. J., Black, M. J., Yacoob, Y., Jepson, A. D.

Int. J. of Computer Vision, 36(3):171-193, 2000 (article)

Abstract
Linear parameterized models of optical flow, particularly affine models, have become widespread in image motion analysis. The linear model coefficients are straightforward to estimate, and they provide reliable estimates of the optical flow of smooth surfaces. Here we explore the use of parameterized motion models that represent much more varied and complex motions. Our goals are threefold: to construct linear bases for complex motion phenomena; to estimate the coefficients of these linear models; and to recognize or classify image motions from the estimated coefficients. We consider two broad classes of motions: i) generic “motion features” such as motion discontinuities and moving bars; and ii) non-rigid, object-specific, motions such as the motion of human mouths. For motion features we construct a basis of steerable flow fields that approximate the motion features. For object-specific motions we construct basis flow fields from example motions using principal component analysis. In both cases, the model coefficients can be estimated directly from spatiotemporal image derivatives with a robust, multi-resolution scheme. Finally, we show how these model coefficients can be use to detect and recognize specific motions such as occlusion boundaries and facial expressions.

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2012 12 06 um 09.48.16
Robustly estimating changes in image appearance

Black, M. J., Fleet, D. J., Yacoob, Y.

Computer Vision and Image Understanding, 78(1):8-31, 2000 (article)

Abstract
We propose a generalized model of image “appearance change” in which brightness variation over time is represented as a probabilistic mixture of different causes. We define four generative models of appearance change due to (1) object or camera motion; (2) illumination phenomena; (3) specular reflections; and (4) “iconic changes” which are specific to the objects being viewed. These iconic changes include complex occlusion events and changes in the material properties of the objects. We develop a robust statistical framework for recovering these appearance changes in image sequences. This approach generalizes previous work on optical flow to provide a richer description of image events and more reliable estimates of image motion in the presence of shadows and specular reflections.

ps

pdf pdf from publisher DOI [BibTex]

pdf pdf from publisher DOI [BibTex]

1996


Thumb xl bildschirmfoto 2012 12 07 um 11.52.07
Estimating optical flow in segmented images using variable-order parametric models with local deformations

Black, M. J., Jepson, A.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(10):972-986, October 1996 (article)

Abstract
This paper presents a new model for estimating optical flow based on the motion of planar regions plus local deformations. The approach exploits brightness information to organize and constrain the interpretation of the motion by using segmented regions of piecewise smooth brightness to hypothesize planar regions in the scene. Parametric flow models are estimated in these regions in a two step process which first computes a coarse fit and estimates the appropriate parameterization of the motion of the region (two, six, or eight parameters). The initial fit is refined using a generalization of the standard area-based regression approaches. Since the assumption of planarity is likely to be violated, we allow local deformations from the planar assumption in the same spirit as physically-based approaches which model shape using coarse parametric models plus local deformations. This parametric+deformation model exploits the strong constraints of parametric approaches while retaining the adaptive nature of regularization approaches. Experimental results on a variety of images indicate that the parametric+deformation model produces accurate flow estimates while the incorporation of brightness segmentation provides precise localization of motion boundaries.

ps

pdf pdf from publisher [BibTex]

1996


pdf pdf from publisher [BibTex]


Thumb xl bildschirmfoto 2012 12 07 um 11.59.00
On the unification of line processes, outlier rejection, and robust statistics with applications in early vision

Black, M., Rangarajan, A.

International Journal of Computer Vision , 19(1):57-92, July 1996 (article)

Abstract
The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While “line-process” models of discontinuities have received a great deal of attention, there has been recent interest in the use of robust statistical techniques to account for discontinuities. This paper unifies the two approaches. To achieve this we generalize the notion of a “line process” to that of an analog “outlier process” and show how a problem formulated in terms of outlier processes can be viewed in terms of robust statistics. We also characterize a class of robust statistical problems for which an equivalent outlier-process formulation exists and give a straightforward method for converting a robust estimation problem into an outlier-process formulation. We show how prior assumptions about the spatial structure of outliers can be expressed as constraints on the recovered analog outlier processes and how traditional continuation methods can be extended to the explicit outlier-process formulation. These results indicate that the outlier-process approach provides a general framework which subsumes the traditional line-process approaches as well as a wide class of robust estimation problems. Examples in surface reconstruction, image segmentation, and optical flow are presented to illustrate the use of outlier processes and to show how the relationship between outlier processes and robust statistics can be exploited. An appendix provides a catalog of common robust error norms and their equivalent outlier-process formulations.

ps

pdf pdf from publisher DOI [BibTex]


Thumb xl bildschirmfoto 2012 12 07 um 12.09.01
The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields

Black, M. J., Anandan, P.

Computer Vision and Image Understanding, 63(1):75-104, January 1996 (article)

Abstract
Most approaches for estimating optical flow assume that, within a finite image region, only a single motion is present. This single motion assumption is violated in common situations involving transparency, depth discontinuities, independently moving objects, shadows, and specular reflections. To robustly estimate optical flow, the single motion assumption must be relaxed. This paper presents a framework based on robust estimation that addresses violations of the brightness constancy and spatial smoothness assumptions caused by multiple motions. We show how the robust estimation framework can be applied to standard formulations of the optical flow problem thus reducing their sensitivity to violations of their underlying assumptions. The approach has been applied to three standard techniques for recovering optical flow: area-based regression, correlation, and regularization with motion discontinuities. This paper focuses on the recovery of multiple parametric motion models within a region, as well as the recovery of piecewise-smooth flow fields, and provides examples with natural and synthetic image sequences.

ps

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]