Header logo is


2003


Thumb xl toc image
New electro-optic effect: Sum-frequency generation from optically active liquids in the presence of a dc electric field

Fischer, P., Buckingham, A., Beckwitt, K., Wiersma, D., Wise, F.

PHYSICAL REVIEW LETTERS, 91(17), 2003 (article)

Abstract
We report the observation of sum-frequency signals that depend linearly on an applied electrostatic field and that change sign with the handedness of an optically active solute. This recently predicted chiral electro-optic effect exists in the electric-dipole approximation. The static electric field gives rise to an electric-field-induced sum-frequency signal (an achiral third-order process) that interferes with the chirality-specific sum-frequency at second order. The cross-terms linear in the electrostatic field constitute the effect and may be used to determine the absolute sign of second- and third-order nonlinear-optical susceptibilities in isotropic media.

pf

DOI [BibTex]

2003


DOI [BibTex]


Thumb xl toc image
Chiral and achiral contributions to sum-frequency generation from optically active solutions of binaphthol

Fischer, P., Wise, F., Albrecht, A.

JOURNAL OF PHYSICAL CHEMISTRY A, 107(40):8232-8238, 2003 (article)

Abstract
The nonlinear sum- and difference-frequency generation spectroscopies can be probes of molecular chirality in optically active systems. We present a tensorial analysis of the chirality-specific electric-dipolar sum-frequency-generation susceptibility and the achiral electric-quadrupolar and magnetic-dipolar nonlinearities at second order in isotropic media. The chiral and achiral contributions to the sum-frequency signal from the bulk of optically active solutions of 1,1'-bi-2-naphthol (2,2'-dehydroxy-1,1'-binaphthyl) can be distinguished, and the former dominates. Ab initio computations reveal the dramatic resonance enhancement that the isotropic component of the electric-dipolar three-wave mixing hyperpolarizability experiences. Away from resonance its magnitude rapidly decreases, as-unlike the vector component-it is zero in the static limit. The dispersion of the first hyperpolarizability is computed by a configuration interaction singles sum-over-states approach with explicit regard to the Franck-Condon active vibrational substructure for all resonant electronic states.

pf

DOI [BibTex]

DOI [BibTex]


no image
Synthetic gecko foot-hair micro/nano-structures as dry adhesives

Sitti, M., Fearing, R. S.

Journal of adhesion science and technology, 17(8):1055-1073, Taylor & Francis Group, 2003 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Teleoperated touch feedback from the surfaces at the nanoscale: modeling and experiments

Sitti, M., Hashimoto, H.

IEEE/ASME transactions on mechatronics, 8(2):287-298, IEEE, 2003 (article)

pi

[BibTex]

[BibTex]


no image
Scaled teleoperation system for nano-scale interaction and manipulation

Sitti, M., Aruk, B., Shintani, H., Hashimoto, H.

Advanced Robotics, 17(3):275-291, Taylor & Francis Group, 2003 (article)

pi

[BibTex]

[BibTex]


no image
Atomic force microscope probe based controlled pushing for nano-tribological characterization

Sitti, M.

IEEE/ASME Transactions on Mechatronics, 8(3), 2003 (article)

pi

[BibTex]


no image
Efficient charge recovery method for driving piezoelectric actuators with quasi-square waves

Campolo, D., Sitti, M., Fearing, R. S.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 50(3):237-244, IEEE, 2003 (article)

pi

[BibTex]

[BibTex]


no image
Piezoelectrically actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax

Sitti, M.

IEEE/ASME transactions on mechatronics, 8(1):26-36, IEEE, 2003 (article)

pi

[BibTex]


no image
In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor

Dwivedi, C., Pandey, I., Pandey, H., Patil, S., Mishra, S. B., Pandey, A. C., Zamboni, P., Ramteke, P. W., Singh, A. V.

Journal of Biomedical Materials Research Part A, 106(3):641-651, March (article)

Abstract
Abstract Diabetic wounds are susceptible to microbial infection. The treatment of these wounds requires a higher payload of growth factors. With this in mind, the strategy for this study was to utilize a novel payload comprising of Eudragit RL/RS 100 nanofibers carrying the bacterial inhibitor gentamicin sulfate (GS) in concert with recombinant human epidermal growth factor (rhEGF); an accelerator of wound healing. GS containing Eudragit was electrospun to yield nanofiber scaffolds, which were further modified by covalent immobilization of rhEGF to their surface. This novel fabricated nanoscaffold was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. The thermal behavior of the nanoscaffold was determined using thermogravimetric analysis and differential scanning calorimetry. In the in vitro antibacterial assays, the nanoscaffolds exhibited comparable antibacterial activity to pure gentemicin powder. In vivo work using female C57/BL6 mice, the nanoscaffolds induced faster wound healing activity in dorsal wounds compared to the control. The paradigm in this study presents a robust in vivo model to enhance the applicability of drug delivery systems in wound healing applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 641–651, 2018.

pi

link (url) DOI [BibTex]


link (url) DOI [BibTex]


no image
Robotics Research

Tong, Chi Hay, Furgale, Paul, Barfoot, Timothy D, Guizilini, Vitor, Ramos, Fabio, Chen, Yushan, T\uumová, Jana, Ulusoy, Alphan, Belta, Calin, Tenorth, Moritz, others

(article)

pi

[BibTex]

[BibTex]