Header logo is


2019


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)

ei

DOI [BibTex]

2019


DOI [BibTex]


no image
High-Fidelity Multiphysics Finite Element Modeling of Finger-Surface Interactions with Tactile Feedback

Serhat, G., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
In this study, we develop a high-fidelity finite element (FE) analysis framework that enables multiphysics simulation of the human finger in contact with a surface that is providing tactile feedback. We aim to elucidate a variety of physical interactions that can occur at finger-surface interfaces, including contact, friction, vibration, and electrovibration. We also develop novel FE-based methods that will allow prediction of nonconventional features such as real finger-surface contact area and finger stickiness. We envision using the developed computational tools for efficient design and optimization of haptic devices by replacing expensive and lengthy experimental procedures with high-fidelity simulation.

hi

[BibTex]

[BibTex]


no image
Fingertip Friction Enhances Perception of Normal Force Changes

Gueorguiev, D., Lambert, J., Thonnard, J., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
Using a force-controlled robotic platform, we tested the human perception of positive and negative modulations in normal force during passive dynamic touch, which also induced a strong related change in the finger-surface lateral force. In a two-alternative forced-choice task, eleven participants had to detect brief variations in the normal force compared to a constant controlled pre-stimulation force of 1 N and report whether it had increased or decreased. The average 75% just noticeable difference (JND) was found to be around 0.25 N for detecting the peak change and 0.30 N for correctly reporting the increase or the decrease. Interestingly, the friction coefficient of a subject’s fingertip positively correlated with his or her performance at detecting the change and reporting its direction, which suggests that humans may use the lateral force as a sensory cue to perceive variations in the normal force.

hi

[BibTex]

[BibTex]


Thumb xl pocketrendering
Inflatable Haptic Sensor for the Torso of a Hugging Robot

Block, A. E., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
During hugs, humans naturally provide and intuit subtle non-verbal cues that signify the strength and duration of an exchanged hug. Personal preferences for this close interaction may vary greatly between people; robots do not currently have the abilities to perceive or understand these preferences. This work-in-progress paper discusses designing, building, and testing a novel inflatable torso that can simultaneously soften a robot and act as a tactile sensor to enable more natural and responsive hugging. Using PVC vinyl, a microphone, and a barometric pressure sensor, we created a small test chamber to demonstrate a proof of concept for the full torso. While contacting the chamber in several ways common in hugs (pat, squeeze, scratch, and rub), we recorded data from the two sensors. The preliminary results suggest that the complementary haptic sensing channels allow us to detect coarse and fine contacts typically experienced during hugs, regardless of user hand placement.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl figure1
Understanding the Pull-off Force of the Human Fingerpad

Nam, S., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
To understand the adhesive force that occurs when a finger pulls off of a smooth surface, we built an apparatus to measure the fingerpad’s moisture, normal force, and real contact area over time during interactions with a glass plate. We recorded a total of 450 trials (45 interactions by each of ten human subjects), capturing a wide range of values across the aforementioned variables. The experimental results showed that the pull-off force increases with larger finger contact area and faster detachment rate. Additionally, moisture generally increases the contact area of the finger, but too much moisture can restrict the increase in the pull-off force.

hi

[BibTex]

[BibTex]


Thumb xl h a image3
The Haptician and the Alphamonsters

Forte, M. P., L’Orsa, R., Mohan, M., Nam, S., Kuchenbecker, K. J.

Student Innovation Challenge on Implementing Haptics in Virtual Reality Environment presented at the IEEE World Haptics Conference, Tokyo, Japan, July 2019, Maria Paola Forte, Rachael L'Orsa, Mayumi Mohan, and Saekwang Nam contributed equally to this publication (misc)

Abstract
Dysgraphia is a neurological disorder characterized by writing disabilities that affects between 7% and 15% of children. It presents itself in the form of unfinished letters, letter distortion, inconsistent letter size, letter collision, etc. Traditional therapeutic exercises require continuous assistance from teachers or occupational therapists. Autonomous partial or full haptic guidance can produce positive results, but children often become bored with the repetitive nature of such activities. Conversely, virtual rehabilitation with video games represents a new frontier for occupational therapy due to its highly motivational nature. Virtual reality (VR) adds an element of novelty and entertainment to therapy, thus motivating players to perform exercises more regularly. We propose leveraging the HTC VIVE Pro and the EXOS Wrist DK2 to create an immersive spellcasting “exergame” (exercise game) that helps motivate children with dysgraphia to improve writing fluency.

hi

Student Innovation Challenge – Virtual Reality [BibTex]

Student Innovation Challenge – Virtual Reality [BibTex]


Thumb xl s ban outdoors 1   small
Explorations of Shape-Changing Haptic Interfaces for Blind and Sighted Pedestrian Navigation

Spiers, A., Kuchenbecker, K. J.

pages: 6, Workshop paper (6 pages) presented at the CHI 2019 Workshop on Hacking Blind Navigation, May 2019 (misc) Accepted

Abstract
Since the 1960s, technologists have worked to develop systems that facilitate independent navigation by vision-impaired (VI) pedestrians. These devices vary in terms of conveyed information and feedback modality. Unfortunately, many such prototypes never progress beyond laboratory testing. Conversely, smartphone-based navigation systems for sighted pedestrians have grown in robustness and capabilities, to the point of now being ubiquitous. How can we leverage the success of sighted navigation technology, which is driven by a larger global market, as a way to progress VI navigation systems? We believe one possibility is to make common devices that benefit both VI and sighted individuals, by providing information in a way that does not distract either user from their tasks or environment. To this end we have developed physical interfaces that eschew visual, audio or vibratory feedback, instead relying on the natural human ability to perceive the shape of a handheld object.

hi

[BibTex]

[BibTex]


no image
Bimanual Wrist-Squeezing Haptic Feedback Changes Speed-Force Tradeoff in Robotic Surgery Training

Cao, E., Machaca, S., Bernard, T., Wolfinger, B., Patterson, Z., Chi, A., Adrales, G. L., Kuchenbecker, K. J., Brown, J. D.

Extended abstract presented as an ePoster at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Baltimore, USA, April 2019 (misc) Accepted

hi

[BibTex]

[BibTex]


no image
Interactive Augmented Reality for Robot-Assisted Surgery

Forte, M. P., Kuchenbecker, K. J.

Extended abstract presented as an Emerging Technology ePoster at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Baltimore, Maryland, USA, April 2019 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
A Design Tool for Therapeutic Social-Physical Human-Robot Interactions

Mohan, M., Kuchenbecker, K. J.

Workshop paper (3 pages) presented at the HRI Pioneers Workshop, Daegu, South Korea, March 2019 (misc) Accepted

Abstract
We live in an aging society; social-physical human-robot interaction has the potential to keep our elderly adults healthy by motivating them to exercise. After summarizing prior work, this paper proposes a tool that can be used to design exercise and therapy interactions to be performed by an upper-body humanoid robot. The interaction design tool comprises a teleoperation system that transmits the operator’s arm motions, head motions and facial expression along with an interface to monitor and assess the motion of the user interacting with the robot. We plan to use this platform to create dynamic and intuitive exercise interactions.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
How Does It Feel to Clap Hands with a Robot?

Fitter, N. T., Kuchenbecker, K. J.

International Journal of Social Robotics, 2019 (article) Accepted

Abstract
Future robots may need lighthearted physical interaction capabilities to connect with people in meaningful ways. To begin exploring how users perceive playful human–robot hand-to-hand interaction, we conducted a study with 20 participants. Each user played simple hand-clapping games with the Rethink Robotics Baxter Research Robot during a 1-h-long session involving 24 randomly ordered conditions that varied in facial reactivity, physical reactivity, arm stiffness, and clapping tempo. Survey data and experiment recordings demonstrate that this interaction is viable: all users successfully completed the experiment and mentioned enjoying at least one game without prompting. Hand-clapping tempo was highly salient to users, and human-like robot errors were more widely accepted than mechanical errors. Furthermore, perceptions of Baxter varied in the following statistically significant ways: facial reactivity increased the robot’s perceived pleasantness and energeticness; physical reactivity decreased pleasantness, energeticness, and dominance; higher arm stiffness increased safety and decreased dominance; and faster tempo increased energeticness and increased dominance. These findings can motivate and guide roboticists who want to design social–physical human–robot interactions.

hi

[BibTex]

[BibTex]


no image
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T

Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.

Magnetic Resonance in Medicine, 2019, (Early View) (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 2019, PNAS published ahead of print January 22, 2019 (article)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


Thumb xl screenshot 2019 03 25 at 14.29.22
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

ei

Arxiv Video [BibTex]


Thumb xl teaser
Toward Expert-Sourcing of a Haptic Device Repository

Seifi, H., Ip, J., Agrawal, A., Kuchenbecker, K. J., MacLean, K. E.

Glasgow, UK, 2019 (misc)

Abstract
Haptipedia is an online taxonomy, database, and visualization that aims to accelerate ideation of new haptic devices and interactions in human-computer interaction, virtual reality, haptics, and robotics. The current version of Haptipedia (105 devices) was created through iterative design, data entry, and evaluation by our team of experts. Next, we aim to greatly increase the number of devices and keep Haptipedia updated by soliciting data entry and verification from haptics experts worldwide.

hi

link (url) [BibTex]

link (url) [BibTex]


no image
Inferring causation from time series with perspectives in Earth system sciences

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M. S. B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.

Nature Communications, 2019 (article) In revision

ei

[BibTex]

[BibTex]


Thumb xl linear solvers stco figure7 1
Probabilistic Linear Solvers: A Unifying View

Bartels, S., Cockayne, J., Ipsen, I. C. F., Hennig, P.

Statistics and Computing, 2019 (article) Accepted

pn

link (url) [BibTex]

link (url) [BibTex]

2018


no image
Parallel and functionally segregated processing of task phase and conscious content in the prefrontal cortex

Kapoor, V., Besserve, M., Logothetis, N. K., Panagiotaropoulos, T. I.

Communications Biology, 1(215):1-12, December 2018 (article)

ei

link (url) DOI Project Page [BibTex]

2018


link (url) DOI Project Page [BibTex]


no image
Reducing 3D Vibrations to 1D in Real Time

Park, G., Kuchenbecker, K. J.

Hands-on demonstration (4 pages) presented at AsiaHaptics, Incheon, South Korea, November 2018 (misc)

Abstract
For simple and realistic vibrotactile feedback, 3D accelerations from real contact interactions are usually rendered using a single-axis vibration actuator; this dimensional reduction can be performed in many ways. This demonstration implements a real-time conversion system that simultaneously measures 3D accelerations and renders corresponding 1D vibrations using a two-pen interface. In the demonstration, a user freely interacts with various objects using an In-Pen that contains a 3-axis accelerometer. The captured accelerations are converted to a single-axis signal, and an Out-Pen renders the reduced signal for the user to feel. We prepared seven conversion methods from the simple use of a single-axis signal to applying principal component analysis (PCA) so that users can compare the performance of each conversion method in this demonstration.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl representative image2
A Large-Scale Fabric-Based Tactile Sensor Using Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

Hands-on demonstration (3 pages) presented at AsiaHaptics, Incheon, South Korea, November 2018 (misc)

Abstract
Large-scale tactile sensing is important for household robots and human-robot interaction because contacts can occur all over a robot’s body surface. This paper presents a new fabric-based tactile sensor that is straightforward to manufacture and can cover a large area. The tactile sensor is made of conductive and non-conductive fabric layers, and the electrodes are stitched with conductive thread, so the resulting device is flexible and stretchable. The sensor utilizes internal array electrodes and a reconstruction method called electrical resistance tomography (ERT) to achieve a high spatial resolution with a small number of electrodes. The developed sensor shows that only 16 electrodes can accurately estimate single and multiple contacts over a square that measures 20 cm by 20 cm.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl stco paper figure11
Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective

Tronarp, F., Kersting, H., Särkkä, S., Hennig, P.

ArXiv preprint 2018, arXiv:1810.03440 [stat.ME], October 2018 (article)

Abstract
We formulate probabilistic numerical approximations to solutions of ordinary differential equations (ODEs) as problems in Gaussian process (GP) regression with non-linear measurement functions. This is achieved by defining the measurement sequence to consists of the observations of the difference between the derivative of the GP and the vector field evaluated at the GP---which are all identically zero at the solution of the ODE. When the GP has a state-space representation, the problem can be reduced to a Bayesian state estimation problem and all widely-used approximations to the Bayesian filtering and smoothing problems become applicable. Furthermore, all previous GP-based ODE solvers, which were formulated in terms of generating synthetic measurements of the vector field, come out as specific approximations. We derive novel solvers, both Gaussian and non-Gaussian, from the Bayesian state estimation problem posed in this paper and compare them with other probabilistic solvers in illustrative experiments.

pn

link (url) Project Page [BibTex]


Thumb xl screen shot 2019 01 07 at 12.05.00
Control of Musculoskeletal Systems using Learned Dynamics Models

Büchler, D., Calandra, R., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 3(4):3161-3168, IEEE, 2018 (article)

Abstract
Controlling musculoskeletal systems, especially robots actuated by pneumatic artificial muscles, is a challenging task due to nonlinearities, hysteresis effects, massive actuator de- lay and unobservable dependencies such as temperature. Despite such difficulties, muscular systems offer many beneficial prop- erties to achieve human-comparable performance in uncertain and fast-changing tasks. For example, muscles are backdrivable and provide variable stiffness while offering high forces to reach high accelerations. In addition, the embodied intelligence deriving from the compliance might reduce the control demands for specific tasks. In this paper, we address the problem of how to accurately control musculoskeletal robots. To address this issue, we propose to learn probabilistic forward dynamics models using Gaussian processes and, subsequently, to employ these models for control. However, Gaussian processes dynamics models cannot be set-up for our musculoskeletal robot as for traditional motor- driven robots because of unclear state composition etc. We hence empirically study and discuss in detail how to tune these approaches to complex musculoskeletal robots and their specific challenges. Moreover, we show that our model can be used to accurately control an antagonistic pair of pneumatic artificial muscles for a trajectory tracking task while considering only one- step-ahead predictions of the forward model and incorporating model uncertainty.

ei

RAL18final link (url) DOI Project Page [BibTex]

RAL18final link (url) DOI Project Page [BibTex]


Thumb xl huggiebot
Softness, Warmth, and Responsiveness Improve Robot Hugs

Block, A. E., Kuchenbecker, K. J.

International Journal of Social Robotics, 11(1):49-64, October 2018 (article)

Abstract
Hugs are one of the first forms of contact and affection humans experience. Due to their prevalence and health benefits, roboticists are naturally interested in having robots one day hug humans as seamlessly as humans hug other humans. This project's purpose is to evaluate human responses to different robot physical characteristics and hugging behaviors. Specifically, we aim to test the hypothesis that a soft, warm, touch-sensitive PR2 humanoid robot can provide humans with satisfying hugs by matching both their hugging pressure and their hugging duration. Thirty relatively young and rather technical participants experienced and evaluated twelve hugs with the robot, divided into three randomly ordered trials that focused on physical robot characteristics (single factor, three levels) and nine randomly ordered trials with low, medium, and high hug pressure and duration (two factors, three levels each). Analysis of the results showed that people significantly prefer soft, warm hugs over hard, cold hugs. Furthermore, users prefer hugs that physically squeeze them and release immediately when they are ready for the hug to end. Taking part in the experiment also significantly increased positive user opinions of robots and robot use.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl teaser ps hi
Statistical Modelling of Fingertip Deformations and Contact Forces during Tactile Interaction

Gueorguiev, D., Tzionas, D., Pacchierotti, C., Black, M. J., Kuchenbecker, K. J.

Extended abstract presented at the Hand, Brain and Technology conference (HBT), Ascona, Switzerland, August 2018 (misc)

Abstract
Little is known about the shape and properties of the human finger during haptic interaction, even though these are essential parameters for controlling wearable finger devices and deliver realistic tactile feedback. This study explores a framework for four-dimensional scanning (3D over time) and modelling of finger-surface interactions, aiming to capture the motion and deformations of the entire finger with high resolution while simultaneously recording the interfacial forces at the contact. Preliminary results show that when the fingertip is actively pressing a rigid surface, it undergoes lateral expansion and proximal/distal bending, deformations that cannot be captured by imaging of the contact area alone. Therefore, we are currently capturing a dataset that will enable us to create a statistical model of the finger’s deformations and predict the contact forces induced by tactile interaction with objects. This technique could improve current methods for tactile rendering in wearable haptic devices, which rely on general physical modelling of the skin’s compliance, by developing an accurate model of the variations in finger properties across the human population. The availability of such a model will also enable a more realistic simulation of virtual finger behaviour in virtual reality (VR) environments, as well as the ability to accurately model a specific user’s finger from lower resolution data. It may also be relevant for inferring the physical properties of the underlying tissue from observing the surface mesh deformations, as previously shown for body tissues.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Task-Driven PCA-Based Design Optimization of Wearable Cutaneous Devices

Pacchierotti, C., Young, E. M., Kuchenbecker, K. J.

IEEE Robotics and Automation Letters, 3(3):2214-2221, July 2018, Presented at ICRA 2018 (article)

Abstract
Small size and low weight are critical requirements for wearable and portable haptic interfaces, making it essential to work toward the optimization of their sensing and actuation systems. This paper presents a new approach for task-driven design optimization of fingertip cutaneous haptic devices. Given one (or more) target tactile interactions to render and a cutaneous device to optimize, we evaluate the minimum number and best configuration of the device’s actuators to minimize the estimated haptic rendering error. First, we calculate the motion needed for the original cutaneous device to render the considered target interaction. Then, we run a principal component analysis (PCA) to search for possible couplings between the original motor inputs, looking also for the best way to reconfigure them. If some couplings exist, we can re-design our cutaneous device with fewer motors, optimally configured to render the target tactile sensation. The proposed approach is quite general and can be applied to different tactile sensors and cutaneous devices. We validated it using a BioTac tactile sensor and custom plate-based 3-DoF and 6-DoF fingertip cutaneous devices, considering six representative target tactile interactions. The algorithm was able to find couplings between each device’s motor inputs, proving it to be a viable approach to optimize the design of wearable and portable cutaneous devices. Finally, we present two examples of optimized designs for our 3-DoF fingertip cutaneous device.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Convergence Rates of Gaussian ODE Filters

Kersting, H., Sullivan, T. J., Hennig, P.

arXiv preprint 2018, arXiv:1807.09737 [math.NA], July 2018 (article)

Abstract
A recently-introduced class of probabilistic (uncertainty-aware) solvers for ordinary differential equations (ODEs) applies Gaussian (Kalman) filtering to initial value problems. These methods model the true solution $x$ and its first $q$ derivatives a priori as a Gauss--Markov process $\boldsymbol{X}$, which is then iteratively conditioned on information about $\dot{x}$. We prove worst-case local convergence rates of order $h^{q+1}$ for a wide range of versions of this Gaussian ODE filter, as well as global convergence rates of order $h^q$ in the case of $q=1$ and an integrated Brownian motion prior, and analyse how inaccurate information on $\dot{x}$ coming from approximate evaluations of $f$ affects these rates. Moreover, we present explicit formulas for the steady states and show that the posterior confidence intervals are well calibrated in all considered cases that exhibit global convergence---in the sense that they globally contract at the same rate as the truncation error.

pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl fitter18 frai imus
Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn IMUs

Fitter, N. T., Kuchenbecker, K. J.

Frontiers in Robotics and Artificial Intelligence, 5(85), July 2018 (article)

Abstract
Colleagues often shake hands in greeting, friends connect through high fives, and children around the world rejoice in hand-clapping games. As robots become more common in everyday human life, they will have the opportunity to join in these social-physical interactions, but few current robots are intended to touch people in friendly ways. This article describes how we enabled a Baxter Research Robot to both teach and learn bimanual hand-clapping games with a human partner. Our system monitors the user's motions via a pair of inertial measurement units (IMUs) worn on the wrists. We recorded a labeled library of 10 common hand-clapping movements from 10 participants; this dataset was used to train an SVM classifier to automatically identify hand-clapping motions from previously unseen participants with a test-set classification accuracy of 97.0%. Baxter uses these sensors and this classifier to quickly identify the motions of its human gameplay partner, so that it can join in hand-clapping games. This system was evaluated by N = 24 naïve users in an experiment that involved learning sequences of eight motions from Baxter, teaching Baxter eight-motion game patterns, and completing a free interaction period. The motion classification accuracy in this less structured setting was 85.9%, primarily due to unexpected variations in motion timing. The quantitative task performance results and qualitative participant survey responses showed that learning games from Baxter was significantly easier than teaching games to Baxter, and that the teaching role caused users to consider more teamwork aspects of the gameplay. Over the course of the experiment, people felt more understood by Baxter and became more willing to follow the example of the robot. Users felt uniformly safe interacting with Baxter, and they expressed positive opinions of Baxter and reported fun interacting with the robot. Taken together, the results indicate that this robot achieved credible social-physical interaction with humans and that its ability to both lead and follow systematically changed the human partner's experience.

hi

DOI [BibTex]

DOI [BibTex]


no image
Reducing 3D Vibrations to 1D in Real Time

Park, G., Kuchenbecker, K. J.

Hands-on demonstration presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

Abstract
In this demonstration, you will hold two pen-shaped modules: an in-pen and an out-pen. The in-pen is instrumented with a high-bandwidth three-axis accelerometer, and the out-pen contains a one-axis voice coil actuator. Use the in-pen to interact with different surfaces; the measured 3D accelerations are continually converted into 1D vibrations and rendered with the out-pen for you to feel. You can test conversion methods that range from simply selecting a single axis to applying a discrete Fourier transform or principal component analysis for realistic and brisk real-time conversion.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Infinite Factorial Finite State Machine for Blind Multiuser Channel Estimation

Ruiz, F. J. R., Valera, I., Svensson, L., Perez-Cruz, F.

IEEE Transactions on Cognitive Communications and Networking, 4(2):177-191, June 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Haptipedia: Exploring Haptic Device Design Through Interactive Visualizations

Seifi, H., Fazlollahi, F., Park, G., Kuchenbecker, K. J., MacLean, K. E.

Hands-on demonstration presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

Abstract
How many haptic devices have been proposed in the last 30 years? How can we leverage this rich source of design knowledge to inspire future innovations? Our goal is to make historical haptic invention accessible through interactive visualization of a comprehensive library – a Haptipedia – of devices that have been annotated with designer-relevant metadata. In this demonstration, participants can explore Haptipedia’s growing library of grounded force feedback devices through several prototype visualizations, interact with 3D simulations of the device mechanisms and movements, and tell us about the attributes and devices that could make Haptipedia a useful resource for the haptic design community.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl koala
Designing a Haptic Empathetic Robot Animal for Children with Autism

Burns, R., Kuchenbecker, K. J.

Workshop paper (4 pages) presented at the RSS Workshop on Robot-Mediated Autism Intervention: Hardware, Software and Curriculum, Pittsburgh, USA, June 2018 (misc)

Abstract
Children with autism often endure sensory overload, may be nonverbal, and have difficulty understanding and relaying emotions. These experiences result in heightened stress during social interaction. Animal-assisted intervention has been found to improve the behavior of children with autism during social interaction, but live animal companions are not always feasible. We are thus in the process of designing a robotic animal to mimic some successful characteristics of animal-assisted intervention while trying to improve on others. The over-arching hypothesis of this research is that an appropriately designed robot animal can reduce stress in children with autism and empower them to engage in social interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Delivering 6-DOF Fingertip Tactile Cues

Young, E., Kuchenbecker, K. J.

Work-in-progress paper (5 pages) presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Soft Multi-Axis Boundary-Electrode Tactile Sensors for Whole-Body Robotic Skin

Lee, H., Kim, J., Kuchenbecker, K. J.

Workshop paper (2 pages) presented at the RSS Pioneers Workshop, Pittsburgh, USA, June 2018 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Assisting Movement Training and Execution With Visual and Haptic Feedback

Ewerton, M., Rother, D., Weimar, J., Kollegger, G., Wiemeyer, J., Peters, J., Maeda, G.

Frontiers in Neurorobotics, 12, May 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Mixture of Attractors: A Novel Movement Primitive Representation for Learning Motor Skills From Demonstrations

Manschitz, S., Gienger, M., Kober, J., Peters, J.

IEEE Robotics and Automation Letters, 3(2):926-933, April 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Automatically Rating Trainee Skill at a Pediatric Laparoscopic Suturing Task

Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.

Surgical Endoscopy, 32(4):1840-1857, April 2018 (article)

hi

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic movement primitives under unknown system dynamics

Paraschos, A., Rueckert, E., Peters, J., Neumann, G.

Advanced Robotics, 32(6):297-310, April 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Arm-Worn Tactile Displays

Kuchenbecker, K. J.

Cross-Cutting Challenge Interactive Discussion presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Fingertips and hands captivate the attention of most haptic interface designers, but humans can feel touch stimuli across the entire body surface. Trying to create devices that both can be worn and can deliver good haptic sensations raises challenges that rarely arise in other contexts. Most notably, tactile cues such as vibration, tapping, and squeezing are far simpler to implement in wearable systems than kinesthetic haptic feedback. This interactive discussion will present a variety of relevant projects to which I have contributed, attempting to pull out common themes and ideas for the future.

hi

[BibTex]

[BibTex]


Thumb xl wireframe main
Haptipedia: An Expert-Sourced Interactive Device Visualization for Haptic Designers

Seifi, H., MacLean, K. E., Kuchenbecker, K. J., Park, G.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Much of three decades of haptic device invention is effectively lost to today’s designers: dispersion across time, region, and discipline imposes an incalculable drag on innovation in this field. Our goal is to make historical haptic invention accessible through interactive navigation of a comprehensive library – a Haptipedia – of devices that have been annotated with designer-relevant metadata. To build this open resource, we will systematically mine the literature and engage the haptics community for expert annotation. In a multi-year broad-based initiative, we will empirically derive salient attributes of haptic devices, design an interactive visualization tool where device creators and repurposers can efficiently explore and search Haptipedia, and establish methods and tools to manually and algorithmically collect data from the haptics literature and our community of experts. This paper outlines progress in compiling an initial corpus of grounded force-feedback devices and their attributes, and it presents a concept sketch of the interface we envision.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
An Algorithmic Perspective on Imitation Learning

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J., Abbeel, P., Peters, J.

Foundations and Trends in Robotics, 7(1-2):1-179, March 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Exercising with Baxter: Design and Evaluation of Assistive Social-Physical Human-Robot Interaction

Fitter, N. T., Mohan, M., Kuchenbecker, K. J., Johnson, M. J.

Workshop paper (6 pages) presented at the HRI Workshop on Personal Robots for Exercising and Coaching, Chicago, USA, March 2018 (misc)

Abstract
The worldwide population of older adults is steadily increasing and will soon exceed the capacity of assisted living facilities. Accordingly, we aim to understand whether appropriately designed robots could help older adults stay active and engaged while living at home. We developed eight human-robot exercise games for the Baxter Research Robot with the guidance of experts in game design, therapy, and rehabilitation. After extensive iteration, these games were employed in a user study that tested their viability with 20 younger and 20 older adult users. All participants were willing to enter Baxter’s workspace and physically interact with the robot. User trust and confidence in Baxter increased significantly between pre- and post-experiment assessments, and one individual from the target user population supplied us with abundant positive feedback about her experience. The preliminary results presented in this paper indicate potential for the use of two-armed human-scale robots for social-physical exercise interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Using Probabilistic Movement Primitives in Robotics

Paraschos, A., Daniel, C., Peters, J., Neumann, G.

Autonomous Robots, 42(3):529-551, March 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl huggingpicture
Emotionally Supporting Humans Through Robot Hugs

Block, A. E., Kuchenbecker, K. J.

Workshop paper (2 pages) presented at the HRI Pioneers Workshop, Chicago, USA, March 2018 (misc)

Abstract
Hugs are one of the first forms of contact and affection humans experience. Due to their prevalence and health benefits, we want to enable robots to safely hug humans. This research strives to create and study a high fidelity robotic system that provides emotional support to people through hugs. This paper outlines our previous work evaluating human responses to a prototype’s physical and behavioral characteristics, and then it lays out our ongoing and future work.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl teaser ps hi
Towards a Statistical Model of Fingertip Contact Deformations from 4D Data

Gueorguiev, D., Tzionas, D., Pacchierotti, C., Black, M. J., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Little is known about the shape and properties of the human finger during haptic interaction even though this knowledge is essential to control wearable finger devices and deliver realistic tactile feedback. This study explores a framework for four-dimensional scanning and modeling of finger-surface interactions, aiming to capture the motion and deformations of the entire finger with high resolution. The results show that when the fingertip is actively pressing a rigid surface, it undergoes lateral expansion of about 0.2 cm and proximal/distal bending of about 30◦, deformations that cannot be captured by imaging of the contact area alone. This project constitutes a first step towards an accurate statistical model of the finger’s behavior during haptic interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
A kernel-based approach to learning contact distributions for robot manipulation tasks

Kroemer, O., Leischnig, S., Luettgen, S., Peters, J.

Autonomous Robots, 42(3):581-600, March 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Can Humans Infer Haptic Surface Properties from Images?

Burka, A., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Human children typically experience their surroundings both visually and haptically, providing ample opportunities to learn rich cross-sensory associations. To thrive in human environments and interact with the real world, robots also need to build models of these cross-sensory associations; current advances in machine learning should make it possible to infer models from large amounts of data. We previously built a visuo-haptic sensing device, the Proton Pack, and are using it to collect a large database of matched multimodal data from tool-surface interactions. As a benchmark to compare with machine learning performance, we conducted a human subject study (n = 84) on estimating haptic surface properties (here: hardness, roughness, friction, and warmness) from images. Using a 100-surface subset of our database, we showed images to study participants and collected 5635 ratings of the four haptic properties, which we compared with ratings made by the Proton Pack operator and with physical data recorded using motion, force, and vibration sensors. Preliminary results indicate weak correlation between participant and operator ratings, but potential for matching up certain human ratings (particularly hardness and roughness) with features from the literature.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Approximate Value Iteration Based on Numerical Quadrature

Vinogradska, J., Bischoff, B., Peters, J.

IEEE Robotics and Automation Letters, 3(2):1330-1337, January 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]