Header logo is


2018


Thumb xl learn etc
Deep Reinforcement Learning for Event-Triggered Control

Baumann, D., Zhu, J., Martius, G., Trimpe, S.

In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 943-950, 57th IEEE International Conference on Decision and Control (CDC), December 2018 (inproceedings)

al ics

arXiv PDF DOI Project Page Project Page [BibTex]

2018


arXiv PDF DOI Project Page Project Page [BibTex]


no image
Kernel Recursive ABC: Point Estimation with Intractable Likelihood

Kajihara, T., Kanagawa, M., Yamazaki, K., Fukumizu, K.

Proceedings of the 35th International Conference on Machine Learning, pages: 2405-2414, PMLR, July 2018 (conference)

Abstract
We propose a novel approach to parameter estimation for simulator-based statistical models with intractable likelihood. Our proposed method involves recursive application of kernel ABC and kernel herding to the same observed data. We provide a theoretical explanation regarding why the approach works, showing (for the population setting) that, under a certain assumption, point estimates obtained with this method converge to the true parameter, as recursion proceeds. We have conducted a variety of numerical experiments, including parameter estimation for a real-world pedestrian flow simulator, and show that in most cases our method outperforms existing approaches.

pn

Paper [BibTex]

Paper [BibTex]


no image
Enhanced Non-Steady Gliding Performance of the MultiMo-Bat through Optimal Airfoil Configuration and Control Strategy

Kim, H., Woodward, M. A., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1382-1388, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


Thumb xl tease pic
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients

Balles, L., Hennig, P.

In Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 (inproceedings) Accepted

Abstract
The ADAM optimizer is exceedingly popular in the deep learning community. Often it works very well, sometimes it doesn't. Why? We interpret ADAM as a combination of two aspects: for each weight, the update direction is determined by the sign of stochastic gradients, whereas the update magnitude is determined by an estimate of their relative variance. We disentangle these two aspects and analyze them in isolation, gaining insight into the mechanisms underlying ADAM. This analysis also extends recent results on adverse effects of ADAM on generalization, isolating the sign aspect as the problematic one. Transferring the variance adaptation to SGD gives rise to a novel method, completing the practitioner's toolbox for problems where ADAM fails.

pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
L4: Practical loss-based stepsize adaptation for deep learning

Rolinek, M., Martius, G.

In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), pages: 6434-6444, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 2018 (inproceedings)

al

Github link (url) Project Page [BibTex]

Github link (url) Project Page [BibTex]


no image
Collectives of Spinning Mobile Microrobots for Navigation and Object Manipulation at the Air-Water Interface

Wang, W., Kishore, V., Koens, L., Lauga, E., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1-9, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


Thumb xl publication alife 2018
Systematic self-exploration of behaviors for robots in a dynamical systems framework

Pinneri, C., Martius, G.

In Proc. Artificial Life XI, pages: 319-326, MIT Press, Cambridge, MA, 2018 (inproceedings)

Abstract
One of the challenges of this century is to understand the neural mechanisms behind cognitive control and learning. Recent investigations propose biologically plausible synaptic mechanisms for self-organizing controllers, in the spirit of Hebbian learning. In particular, differential extrinsic plasticity (DEP) [Der and Martius, PNAS 2015], has proven to enable embodied agents to self-organize their individual sensorimotor development, and generate highly coordinated behaviors during their interaction with the environment. These behaviors are attractors of a dynamical system. In this paper, we use the DEP rule to generate attractors and we combine it with a “repelling potential” which allows the system to actively explore all its attractor behaviors in a systematic way. With a view to a self-determined exploration of goal-free behaviors, our framework enables switching between different motion patterns in an autonomous and sequential fashion. Our algorithm is able to recover all the attractor behaviors in a toy system and it is also effective in two simulated environments. A spherical robot discovers all its major rolling modes and a hexapod robot learns to locomote in 50 different ways in 30min.

al

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Endo-VMFuseNet: A Deep Visual-Magnetic Sensor Fusion Approach for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Gilbert, H. B., Sari, A. E., Soylu, U., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-7, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Endosensorfusion: Particle filtering-based multi-sensory data fusion with switching state-space model for endoscopic capsule robots

Turan, M., Almalioglu, Y., Gilbert, H., Araujo, H., Cemgil, T., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-8, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


Thumb xl featured pic
Learning equations for extrapolation and control

Sahoo, S. S., Lampert, C. H., Martius, G.

In Proc. 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 2018, 80, pages: 4442-4450, http://proceedings.mlr.press/v80/sahoo18a/sahoo18a.pdf, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, 2018 (inproceedings)

Abstract
We present an approach to identify concise equations from data using a shallow neural network approach. In contrast to ordinary black-box regression, this approach allows understanding functional relations and generalizing them from observed data to unseen parts of the parameter space. We show how to extend the class of learnable equations for a recently proposed equation learning network to include divisions, and we improve the learning and model selection strategy to be useful for challenging real-world data. For systems governed by analytical expressions, our method can in many cases identify the true underlying equation and extrapolate to unseen domains. We demonstrate its effectiveness by experiments on a cart-pendulum system, where only 2 random rollouts are required to learn the forward dynamics and successfully achieve the swing-up task.

al

Code Arxiv Poster Slides link (url) Project Page [BibTex]

Code Arxiv Poster Slides link (url) Project Page [BibTex]


Thumb xl sab
Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns

Sun, H., Martius, G.

Proceedings International Conference on Humanoid Robots, pages: 846-853, IEEE, New York, NY, USA, 2018 IEEE-RAS International Conference on Humanoid Robots, 2018, Oral Presentation (conference)

Abstract
Haptic sensation is an important modality for interacting with the real world. This paper proposes a general framework of inferring haptic forces on the surface of a 3D structure from internal deformations using a small number of physical sensors instead of employing dense sensor arrays. Using machine learning techniques, we optimize the sensor number and their placement and are able to obtain high-precision force inference for a robotic limb using as few as 9 sensors. For the optimal and sparse placement of the measurement units (strain gauges), we employ data-driven methods based on data obtained by finite element simulation. We compare data-driven approaches with model-based methods relying on geometric distance and information criteria such as Entropy and Mutual Information. We validate our approach on a modified limb of the “Poppy” robot [1] and obtain 8 mm localization precision.

al

DOI Project Page [BibTex]

DOI Project Page [BibTex]

2011


no image
Optimal Reinforcement Learning for Gaussian Systems

Hennig, P.

In Advances in Neural Information Processing Systems 24, pages: 325-333, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
The exploration-exploitation trade-off is among the central challenges of reinforcement learning. The optimal Bayesian solution is intractable in general. This paper studies to what extent analytic statements about optimal learning are possible if all beliefs are Gaussian processes. A first order approximation of learning of both loss and dynamics, for nonlinear, time-varying systems in continuous time and space, subject to a relatively weak restriction on the dynamics, is described by an infinite-dimensional partial differential equation. An approximate finitedimensional projection gives an impression for how this result may be helpful.

ei pn

PDF Web [BibTex]

2011


PDF Web [BibTex]


no image
Design and analysis of a magnetically actuated and compliant capsule endoscopic robot

Yim, S., Sitti, M.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 4810-4815, 2011 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Micro-scale propulsion using multiple flexible artificial flagella

Singleton, J., Diller, E., Andersen, T., Regnier, S., Sitti, M.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 1687-1692, 2011 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Control of multiple heterogeneous magnetic micro-robots on non-specialized surfaces

Diller, E., Floyd, S., Pawashe, C., Sitti, M.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 115-120, 2011 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Tip based robotic precision micro/nanomanipulation systems

Onal, C., Sumer, B., Ozcan, O., Nain, A., Sitti, M.

In SPIE Defense, Security, and Sensing, pages: 80580M-80580M, 2011 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Design of a miniature integrated multi-modal jumping and gliding robot

Woodward, M. A., Sitti, M.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 556-561, 2011 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Free flight simulations and pitch and roll control experiments of a sub-gram flapping-flight micro aerial vehicle

Hines, L. L., Arabagi, V., Sitti, M.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 1-7, 2011 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Chemotactic behavior and dynamics of bacteria propelled microbeads

Kim, Dongwook, Liu, Albert, Stitti, Metin

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 1674-1679, 2011 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Under-actuated tank-like climbing robot with various transitioning capabilities

Seo, T., Sitti, M.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 777-782, 2011 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Rotating magnetic micro-robots for versatile non-contact fluidic manipulation of micro-objects

Diller, E., Ye, Z., Sitti, M.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 1291-1296, 2011 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems

Pawashe, C., Diller, E., Floyd, S., Sitti, M.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 261-266, 2011 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Stochastic dynamics of bacteria propelled spherical micro-robots

Arabagi, V., Behkam, B., Sitti, M.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 3937-3942, 2011 (inproceedings)

pi

[BibTex]

[BibTex]

2009


no image
Characterization of bacterial actuation of micro-objects

Behkam, B., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1022-1027, 2009 (inproceedings)

pi

[BibTex]

2009


[BibTex]


no image
Compliant footpad design analysis for a bio-inspired quadruped amphibious robot

Park, H. S., Sitti, M.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 645-651, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A novel artificial hair receptor based on aligned PVDF micro/nano fibers

Weiting, Liu, Bilsay, Sumer, Cesare, Stefanini, Arianna, Menciassi, Fei, Li, Dajing, Chen, Paolo, Dario, Metin, Sitti, Xin, Fu

In Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on, pages: 49-54, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Waalbot: Agile climbing with synthetic fibrillar dry adhesives

Murphy, M. P., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1599-1600, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Piezoelectric ultrasonic resonant micromotor with a volume of less than 1 mm 3 for use in medical microbots

Watson, B., Friend, J., Yeo, L., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2225-2230, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Dynamic modeling and analysis of pitch motion of a basilisk lizard inspired quadruped robot running on water

Park, H. S., Floyd, S., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2655-2660, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A miniature ceiling walking robot with flat tacky elastomeric footpads

Unver, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2276-2281, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Tankbot: A miniature, peeling based climber on rough and smooth surfaces

Unver, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2282-2287, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Automated 2-D nanoparticle manipulation with an atomic force microscope

Onal, C. D., Ozcan, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1814-1819, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Microparticle manipulation using multiple untethered magnetic micro-robots on an electrostatic surface

Floyd, S., Pawashe, C., Sitti, M.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 528-533, 2009 (inproceedings)

pi

[BibTex]

[BibTex]

2005


no image
Modeling and testing of a biomimetic flagellar propulsion method for microscale biomedical swimming robots

Behkam, B., Sitti, M.

In Proceedings of Advanced Intelligent Mechatronics Conference, pages: 37-42, 2005 (inproceedings)

pi

Project Page [BibTex]

2005


Project Page [BibTex]


no image
Biologically inspired adhesion based surface climbing robots

Menon, C., Sitti, M.

In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pages: 2715-2720, 2005 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Claytronics: highly scalable communications, sensing, and actuation networks

Aksak, Burak, Bhat, Preethi Srinivas, Campbell, Jason, DeRosa, Michael, Funiak, Stanislav, Gibbons, Phillip B, Goldstein, Seth Copen, Guestrin, Carlos, Gupta, Ashish, Helfrich, Casey, others

In Proceedings of the 3rd international conference on Embedded networked sensor systems, pages: 299-299, 2005 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Biologically Inspired Miniature Water Strider Robot.

Suhr, S. H., Song, Y. S., Lee, S. J., Sitti, M.

In Robotics: Science and Systems, pages: 319-326, 2005 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Polymer micro/nanofiber fabrication using micro/nanopipettes

Nain, A. S., Amon, C., Sitti, M.

In Nanotechnology, 2005. 5th IEEE Conference on, pages: 366-369, 2005 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Fusion of biomedical microcapsule endoscope and microsystem technology

Kim, Tae Song, Kim, Byungkyu, Cho, Dongil Dan, Song, Si Young, Dario, P, Sitti, M

In Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS’05. The 13th International Conference on, 1, pages: 9-14, 2005 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Atomic force microscope based two-dimensional assembly of micro/nanoparticles

Tafazzoli, A., Pawashe, C., Sitti, M.

In Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, 2005.(ISATP 2005). The 6th IEEE International Symposium on, pages: 230-235, 2005 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A new endoscopic microcapsule robot using beetle inspired microfibrillar adhesives

Cheung, E., Karagozler, M. E., Park, S., Kim, B., Sitti, M.

In Advanced Intelligent Mechatronics. Proceedings, 2005 IEEE/ASME International Conference on, pages: 551-557, 2005 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Learning to Feel the Physics of a Body

Der, R., Hesse, F., Martius, G.

In Computational Intelligence for Modelling, Control and Automation, CIMCA 2005 , 2, pages: 252-257, Washington, DC, USA, 2005 (inproceedings)

Abstract
Despite the tremendous progress in robotic hardware and in both sensorial and computing efficiencies the performance of contemporary autonomous robots is still far below that of simple animals. This has triggered an intensive search for alternative approaches to the control of robots. The present paper exemplifies a general approach to the self-organization of behavior which has been developed and tested in various examples in recent years. We apply this approach to an underactuated snake like artifact with a complex physical behavior which is not known to the controller. Due to the weak forces available, the controller so to say has to develop a kind of feeling for the body which is seen to emerge from our approach in a natural way with meandering and rotational collective modes being observed in computer simulation experiments.

al

[BibTex]

[BibTex]