Header logo is


2016


Gaussian Process-Based Predictive Control for Periodic Error Correction
Gaussian Process-Based Predictive Control for Periodic Error Correction

Klenske, E. D., Zeilinger, M., Schölkopf, B., Hennig, P.

IEEE Transactions on Control Systems Technology , 24(1):110-121, 2016 (article)

ei pn

PDF DOI [BibTex]

2016


PDF DOI [BibTex]


Dual Control for Approximate Bayesian Reinforcement Learning
Dual Control for Approximate Bayesian Reinforcement Learning

Klenske, E. D., Hennig, P.

Journal of Machine Learning Research, 17(127):1-30, 2016 (article)

ei pn

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
One for all?! Simultaneous examination of load-inducing factors for advancing media-related instructional research

Wirzberger, M., Beege, M., Schneider, S., Nebel, S., Rey, G. D.

Computers {\&} Education, 100, pages: 18-31, Elsevier BV, 2016 (article)

Abstract
In multimedia learning settings, limitations in learners' mental resource capacities need to be considered to avoid impairing effects on learning performance. Based on the prominent and often quoted Cognitive Load Theory, this study investigates the potential of a single experimental approach to provide simultaneous and separate measures for the postulated load-inducing factors. Applying a basal letter-learning task related to the process of working memory updating, intrinsic cognitive load (by varying task complexity), extraneous cognitive load (via inducing split-attention demands) and germane cognitive load (by varying the presence of schemata) were manipulated within a 3 × 2 × 2-factorial full repeated-measures design. The performance of a student sample (N = 96) was inspected regarding reaction times and errors in updating and recall steps. Approaching the results with linear mixed models, the effect of complexity gained substantial strength, whereas the other factors received at least partial significant support. Additionally, interactions between two or all load-inducing factors occurred. Despite various open questions, the study comprises a promising step for the empirical investigation of existing construction yards in cognitive load research.

re

DOI [BibTex]

DOI [BibTex]

2015


no image
Probabilistic Interpretation of Linear Solvers

Hennig, P.

SIAM Journal on Optimization, 25(1):234-260, 2015 (article)

ei pn

Web PDF link (url) DOI [BibTex]

2015


Web PDF link (url) DOI [BibTex]


no image
Modeling interruption and resumption in a smartphone task: An ACT-R approach

Wirzberger, M., Russwinkel, N.

i-com, 14(2), Walter de Gruyter GmbH, 2015 (article)

Abstract
This research aims to inspect human cognition when being interrupted while performing a smartphone task with varying levels of mental demand. Due to its benefits especially in the early stages of interface development, a cognitive modeling approach is used. It applies the cognitive architecture ACT-R to shed light on task-related cognitive processing. The inspected task setting involves a shopping scenario, manipulating interruption via product advertisements and mental demands by the respective number of people shopping is done for. Model predictions are validated through a corresponding experimental setting with 62 human participants. Comparing model and human data in a defined set of performance-related parameters displays mixed results that indicate an acceptable fit – at least in some cases. Potential explanations for the observed differences are discussed at the end.

re

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic numerics and uncertainty in computations

Hennig, P., Osborne, M. A., Girolami, M.

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471(2179), 2015 (article)

Abstract
We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
The optimism bias may support rational action

Lieder, F., Goel, S., Kwan, R., Griffiths, T. L.

NIPS 2015 Workshop on Bounded Optimality and Rational Metareasoning, 2015 (article)

re

[BibTex]

[BibTex]


no image
Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic

Griffiths, T. L., Lieder, F., Goodman, N. D.

Topics in Cognitive Science, 7(2):217-229, Wiley, 2015 (article)

re

[BibTex]

[BibTex]


no image
Model-based strategy selection learning

Lieder, F., Griffiths, T. L.

The 2nd Multidisciplinary Conference on Reinforcement Learning and Decision Making, 2015 (article)

re

Project Page [BibTex]

Project Page [BibTex]