Header logo is


2012


Entropy Search for Information-Efficient Global Optimization
Entropy Search for Information-Efficient Global Optimization

Hennig, P., Schuler, C.

Journal of Machine Learning Research, 13, pages: 1809-1837, -, June 2012 (article)

Abstract
Contemporary global optimization algorithms are based on local measures of utility, rather than a probability measure over location and value of the optimum. They thus attempt to collect low function values, not to learn about the optimum. The reason for the absence of probabilistic global optimizers is that the corresponding inference problem is intractable in several ways. This paper develops desiderata for probabilistic optimization algorithms, then presents a concrete algorithm which addresses each of the computational intractabilities with a sequence of approximations and explicitly adresses the decision problem of maximizing information gain from each evaluation.

ei pn

PDF Web Project Page [BibTex]

2012


PDF Web Project Page [BibTex]


no image
Burn-in, bias, and the rationality of anchoring

Lieder, F., Griffiths, T. L., Goodman, N. D.

Advances in Neural Information Processing Systems 25, pages: 2699-2707, 2012 (article)

Abstract
Bayesian inference provides a unifying framework for addressing problems in machine learning, artificial intelligence, and robotics, as well as the problems facing the human mind. Unfortunately, exact Bayesian inference is intractable in all but the simplest models. Therefore minds and machines have to approximate Bayesian inference. Approximate inference algorithms can achieve a wide range of time-accuracy tradeoffs, but what is the optimal tradeoff? We investigate time-accuracy tradeoffs using the Metropolis-Hastings algorithm as a metaphor for the mind's inference algorithm(s). We find that reasonably accurate decisions are possible long before the Markov chain has converged to the posterior distribution, i.e. during the period known as burn-in. Therefore the strategy that is optimal subject to the mind's bounded processing speed and opportunity costs may perform so few iterations that the resulting samples are biased towards the initial value. The resulting cognitive process model provides a rational basis for the anchoring-and-adjustment heuristic. The model's quantitative predictions are tested against published data on anchoring in numerical estimation tasks. Our theoretical and empirical results suggest that the anchoring bias is consistent with approximate Bayesian inference.

re

link (url) [BibTex]

link (url) [BibTex]


no image
RoboCup@Home: Demonstrating Everyday Manipulation Skills in RoboCup@Home

Stueckler, J., Holz, D., Behnke, S.

IEEE Robotics and Automation Magazine (RAM), 19(2):34-42, 2012 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2008


no image
Hierarchical Reactive Control for Humanoid Soccer Robots

Behnke, S., Stueckler, J.

International Journal of Humanoid Robots (IJHR), 5(3):375-396, 2008 (article)

ev

link (url) [BibTex]

2008


link (url) [BibTex]

2007


no image
Point-spread functions for backscattered imaging in the scanning electron microscope

Hennig, P., Denk, W.

Journal of Applied Physics , 102(12):1-8, December 2007 (article)

Abstract
One knows the imaging system's properties are central to the correct interpretation of any image. In a scanning electron microscope regions of different composition generally interact in a highly nonlinear way during signal generation. Using Monte Carlo simulations we found that in resin-embedded, heavy metal-stained biological specimens staining is sufficiently dilute to allow an approximately linear treatment. We then mapped point-spread functions for backscattered-electron contrast, for primary energies of 3 and 7 keV and for different detector specifications. The point-spread functions are surprisingly well confined (both laterally and in depth) compared even to the distribution of only those scattered electrons that leave the sample again.

ei pn

Web DOI [BibTex]

2007


Web DOI [BibTex]