Header logo is


2013


no image
Camera-specific Image Denoising

Schober, M.

Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)

ei pn

PDF [BibTex]

2013


PDF [BibTex]


Thumb xl thumb hennigk2012 2
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

Journal of Machine Learning Research, 14(1):843-865, March 2013 (article)

Abstract
Four decades after their invention, quasi-Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

ei ps pn

website+code pdf link (url) [BibTex]

website+code pdf link (url) [BibTex]


no image
Analytical probabilistic modeling for radiation therapy treatment planning

Bangert, M., Hennig, P., Oelfke, U.

Physics in Medicine and Biology, 58(16):5401-5419, 2013 (article)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]

2007


no image
Point-spread functions for backscattered imaging in the scanning electron microscope

Hennig, P., Denk, W.

Journal of Applied Physics , 102(12):1-8, December 2007 (article)

Abstract
One knows the imaging system's properties are central to the correct interpretation of any image. In a scanning electron microscope regions of different composition generally interact in a highly nonlinear way during signal generation. Using Monte Carlo simulations we found that in resin-embedded, heavy metal-stained biological specimens staining is sufficiently dilute to allow an approximately linear treatment. We then mapped point-spread functions for backscattered-electron contrast, for primary energies of 3 and 7 keV and for different detector specifications. The point-spread functions are surprisingly well confined (both laterally and in depth) compared even to the distribution of only those scattered electrons that leave the sample again.

ei pn

Web DOI [BibTex]

2007


Web DOI [BibTex]