Header logo is


2016


Thumb xl nonlinear approximate vs exact
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Garcia Cifuentes, C., Kappler, D., Schaal, S.

The International Journal of Robotics Research, 35(14):1731-1749, December 2016 (article)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. The GF represents the belief of the current state by a Gaussian distribution, whose mean is an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependences in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end, we view the GF as the solution to a constrained optimization problem. From this new perspective, the GF is seen as a special case of a much broader class of filters, obtained by relaxing the constraint on the form of the approximate posterior. On this basis, we outline some conditions which potential generalizations have to satisfy in order to maintain the computational efficiency of the GF. We propose one concrete generalization which corresponds to the standard GF using a pseudo measurement instead of the actual measurement. Extending an existing GF implementation in this manner is trivial. Nevertheless, we show that this small change can have a major impact on the estimation accuracy.

am ics

PDF DOI Project Page [BibTex]

2016


PDF DOI Project Page [BibTex]


Thumb xl psychscience
Creating body shapes from verbal descriptions by linking similarity spaces

Hill, M. Q., Streuber, S., Hahn, C. A., Black, M. J., O’Toole, A. J.

Psychological Science, 27(11):1486-1497, November 2016, (article)

Abstract
Brief verbal descriptions of bodies (e.g. curvy, long-legged) can elicit vivid mental images. The ease with which we create these mental images belies the complexity of three-dimensional body shapes. We explored the relationship between body shapes and body descriptions and show that a small number of words can be used to generate categorically accurate representations of three-dimensional bodies. The dimensions of body shape variation that emerged in a language-based similarity space were related to major dimensions of variation computed directly from three-dimensional laser scans of 2094 bodies. This allowed us to generate three-dimensional models of people in the shape space using only their coordinates on analogous dimensions in the language-based description space. Human descriptions of photographed bodies and their corresponding models matched closely. The natural mapping between the spaces illustrates the role of language as a concise code for body shape, capturing perceptually salient global and local body features.

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl webteaser
Body Talk: Crowdshaping Realistic 3D Avatars with Words

Streuber, S., Quiros-Ramirez, M. A., Hill, M. Q., Hahn, C. A., Zuffi, S., O’Toole, A., Black, M. J.

ACM Trans. Graph. (Proc. SIGGRAPH), 35(4):54:1-54:14, July 2016 (article)

Abstract
Realistic, metrically accurate, 3D human avatars are useful for games, shopping, virtual reality, and health applications. Such avatars are not in wide use because solutions for creating them from high-end scanners, low-cost range cameras, and tailoring measurements all have limitations. Here we propose a simple solution and show that it is surprisingly accurate. We use crowdsourcing to generate attribute ratings of 3D body shapes corresponding to standard linguistic descriptions of 3D shape. We then learn a linear function relating these ratings to 3D human shape parameters. Given an image of a new body, we again turn to the crowd for ratings of the body shape. The collection of linguistic ratings of a photograph provides remarkably strong constraints on the metric 3D shape. We call the process crowdshaping and show that our Body Talk system produces shapes that are perceptually indistinguishable from bodies created from high-resolution scans and that the metric accuracy is sufficient for many tasks. This makes body “scanning” practical without a scanner, opening up new applications including database search, visualization, and extracting avatars from books.

ps

pdf web tool video talk (ppt) [BibTex]

pdf web tool video talk (ppt) [BibTex]


Thumb xl ijcv tumb
Capturing Hands in Action using Discriminative Salient Points and Physics Simulation

Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.

International Journal of Computer Vision (IJCV), 118(2):172-193, June 2016 (article)

Abstract
Hand motion capture is a popular research field, recently gaining more attention due to the ubiquity of RGB-D sensors. However, even most recent approaches focus on the case of a single isolated hand. In this work, we focus on hands that interact with other hands or objects and present a framework that successfully captures motion in such interaction scenarios for both rigid and articulated objects. Our framework combines a generative model with discriminatively trained salient points to achieve a low tracking error and with collision detection and physics simulation to achieve physically plausible estimates even in case of occlusions and missing visual data. Since all components are unified in a single objective function which is almost everywhere differentiable, it can be optimized with standard optimization techniques. Our approach works for monocular RGB-D sequences as well as setups with multiple synchronized RGB cameras. For a qualitative and quantitative evaluation, we captured 29 sequences with a large variety of interactions and up to 150 degrees of freedom.

ps

Website pdf link (url) DOI Project Page [BibTex]

Website pdf link (url) DOI Project Page [BibTex]


Thumb xl screen shot 2016 06 27 at 09.38.59
Implications of Action-Oriented Paradigm Shifts in Cognitive Science

Dominey, P. F., Prescott, T. J., Bohg, J., Engel, A. K., Gallagher, S., Heed, T., Hoffmann, M., Knoblich, G., Prinz, W., Schwartz, A.

In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 333-356, 20, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press

Abstract
An action-oriented perspective changes the role of an individual from a passive observer to an actively engaged agent interacting in a closed loop with the world as well as with others. Cognition exists to serve action within a landscape that contains both. This chapter surveys this landscape and addresses the status of the pragmatic turn. Its potential influence on science and the study of cognition are considered (including perception, social cognition, social interaction, sensorimotor entrainment, and language acquisition) and its impact on how neuroscience is studied is also investigated (with the notion that brains do not passively build models, but instead support the guidance of action). A review of its implications in robotics and engineering includes a discussion of the application of enactive control principles to couple action and perception in robotics as well as the conceptualization of system design in a more holistic, less modular manner. Practical applications that can impact the human condition are reviewed (e.g. educational applications, treatment possibilities for developmental and psychopathological disorders, the development of neural prostheses). All of this foreshadows the potential societal implications of the pragmatic turn. The chapter concludes that an action-oriented approach emphasizes a continuum of interaction between technical aspects of cognitive systems and robotics, biology, psychology, the social sciences, and the humanities, where the individual is part of a grounded cultural system.

am

The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science 18th Ernst Strüngmann Forum Bibliography Chapter link (url) [BibTex]

The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science 18th Ernst Strüngmann Forum Bibliography Chapter link (url) [BibTex]


Thumb xl looplearning
Learning Action-Perception Cycles in Robotics: A Question of Representations and Embodiment

Bohg, J., Kragic, D.

In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 309-320, 18, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press

Abstract
Since the 1950s, robotics research has sought to build a general-purpose agent capable of autonomous, open-ended interaction with realistic, unconstrained environments. Cognition is perceived to be at the core of this process, yet understanding has been challenged because cognition is referred to differently within and across research areas, and is not clearly defined. The classic robotics approach is decomposition into functional modules which perform planning, reasoning, and problem-solving or provide input to these mechanisms. Although advancements have been made and numerous success stories reported in specific niches, this systems-engineering approach has not succeeded in building such a cognitive agent. The emergence of an action-oriented paradigm offers a new approach: action and perception are no longer separable into functional modules but must be considered in a complete loop. This chapter reviews work on different mechanisms for action- perception learning and discusses the role of embodiment in the design of the underlying representations and learning. It discusses the evaluation of agents and suggests the development of a new embodied Turing Test. Appropriate scenarios need to be devised in addition to current competitions, so that abilities can be tested over long time periods.

am

18th Ernst Strüngmann Forum The Pragmatic Turn- Toward Action-Oriented Views in Cognitive Science Bibliography Chapter link (url) [BibTex]

18th Ernst Strüngmann Forum The Pragmatic Turn- Toward Action-Oriented Views in Cognitive Science Bibliography Chapter link (url) [BibTex]


Thumb xl teaser web
Human Pose Estimation from Video and IMUs

Marcard, T. V., Pons-Moll, G., Rosenhahn, B.

Transactions on Pattern Analysis and Machine Intelligence PAMI, 38(8):1533-1547, January 2016 (article)

ps

data pdf dataset_documentation [BibTex]

data pdf dataset_documentation [BibTex]


no image
Probabilistic Inference for Determining Options in Reinforcement Learning

Daniel, C., van Hoof, H., Peters, J., Neumann, G.

Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECML-PKDD 2016 (article)

am ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl both testbed cropped
Moving-horizon Nonlinear Least Squares-based Multirobot Cooperative Perception

Ahmad, A., Bülthoff, H.

Robotics and Autonomous Systems, 83, pages: 275-286, 2016 (article)

Abstract
In this article we present an online estimator for multirobot cooperative localization and target tracking based on nonlinear least squares minimization. Our method not only makes the rigorous optimization-based approach applicable online but also allows the estimator to be stable and convergent. We do so by employing a moving horizon technique to nonlinear least squares minimization and a novel design of the arrival cost function that ensures stability and convergence of the estimator. Through an extensive set of real robot experiments, we demonstrate the robustness of our method as well as the optimality of the arrival cost function. The experiments include comparisons of our method with i) an extended Kalman filter-based online-estimator and ii) an offline-estimator based on full-trajectory nonlinear least squares.

ps

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl siyong
Shape estimation of subcutaneous adipose tissue using an articulated statistical shape model

Yeo, S. Y., Romero, J., Loper, M., Machann, J., Black, M.

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 0(0):1-8, 2016 (article)

ps

publisher website preprint pdf link (url) DOI Project Page [BibTex]

publisher website preprint pdf link (url) DOI Project Page [BibTex]


no image
Locally Weighted Regression for Control

Ting, J., Meier, F., Vijayakumar, S., Schaal, S.

In Encyclopedia of Machine Learning and Data Mining, pages: 1-14, Springer US, Boston, MA, 2016 (inbook)

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Event-based Sampling for Reducing Communication Load in Realtime Human Motion Analysis by Wireless Inertial Sensor Networks

Laidig, D., Trimpe, S., Seel, T.

Current Directions in Biomedical Engineering, 2(1):711-714, De Gruyter, 2016 (article)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl screen shot 2016 02 22 at 11.46.41
The GRASP Taxonomy of Human Grasp Types

Feix, T., Romero, J., Schmiedmayer, H., Dollar, A., Kragic, D.

Human-Machine Systems, IEEE Transactions on, 46(1):66-77, 2016 (article)

ps

publisher website pdf DOI Project Page [BibTex]

publisher website pdf DOI Project Page [BibTex]


Thumb xl pami
Map-Based Probabilistic Visual Self-Localization

Brubaker, M. A., Geiger, A., Urtasun, R.

IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 2016 (article)

Abstract
Accurate and efficient self-localization is a critical problem for autonomous systems. This paper describes an affordable solution to vehicle self-localization which uses odometry computed from two video cameras and road maps as the sole inputs. The core of the method is a probabilistic model for which an efficient approximate inference algorithm is derived. The inference algorithm is able to utilize distributed computation in order to meet the real-time requirements of autonomous systems in some instances. Because of the probabilistic nature of the model the method is capable of coping with various sources of uncertainty including noise in the visual odometry and inherent ambiguities in the map (e.g., in a Manhattan world). By exploiting freely available, community developed maps and visual odometry measurements, the proposed method is able to localize a vehicle to 4m on average after 52 seconds of driving on maps which contain more than 2,150km of drivable roads.

avg ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid

Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., Righetti, L.

Autonomous Robots, 40(3):473-491, 2016 (article)

Abstract
Hierarchical inverse dynamics based on cascades of quadratic programs have been proposed for the control of legged robots. They have important benefits but to the best of our knowledge have never been implemented on a torque controlled humanoid where model inaccuracies, sensor noise and real-time computation requirements can be problematic. Using a reformulation of existing algorithms, we propose a simplification of the problem that allows to achieve real-time control. Momentum-based control is integrated in the task hierarchy and a LQR design approach is used to compute the desired associated closed-loop behavior and improve performance. Extensive experiments on various balancing and tracking tasks show very robust performance in the face of unknown disturbances, even when the humanoid is standing on one foot. Our results demonstrate that hierarchical inverse dynamics together with momentum control can be efficiently used for feedback control under real robot conditions.

am mg

link (url) DOI [BibTex]


no image
Bioinspired Motor Control for Articulated Robots [From the Guest Editors]

Vitiello, Nicola, Ijspeert, Auke J, Schaal, S.

IEEE Robotics {\&} Automation Magazine, 23(1):20-21, 2016 (article)

am

[BibTex]

[BibTex]

2014


no image
Wenn es was zu sagen gibt

(Klaus Tschira Award 2014 in Computer Science)

Trimpe, S.

Bild der Wissenschaft, pages: 20-23, November 2014, (popular science article in German) (article)

am ics

PDF Project Page [BibTex]

2014


PDF Project Page [BibTex]


Thumb xl mosh heroes icon
MoSh: Motion and Shape Capture from Sparse Markers

Loper, M. M., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 33(6):220:1-220:13, ACM, New York, NY, USA, November 2014 (article)

Abstract
Marker-based motion capture (mocap) is widely criticized as producing lifeless animations. We argue that important information about body surface motion is present in standard marker sets but is lost in extracting a skeleton. We demonstrate a new approach called MoSh (Motion and Shape capture), that automatically extracts this detail from mocap data. MoSh estimates body shape and pose together using sparse marker data by exploiting a parametric model of the human body. In contrast to previous work, MoSh solves for the marker locations relative to the body and estimates accurate body shape directly from the markers without the use of 3D scans; this effectively turns a mocap system into an approximate body scanner. MoSh is able to capture soft tissue motions directly from markers by allowing body shape to vary over time. We evaluate the effect of different marker sets on pose and shape accuracy and propose a new sparse marker set for capturing soft-tissue motion. We illustrate MoSh by recovering body shape, pose, and soft-tissue motion from archival mocap data and using this to produce animations with subtlety and realism. We also show soft-tissue motion retargeting to new characters and show how to magnify the 3D deformations of soft tissue to create animations with appealing exaggerations.

ps

pdf video data pdf from publisher link (url) DOI Project Page Project Page Project Page [BibTex]

pdf video data pdf from publisher link (url) DOI Project Page Project Page Project Page [BibTex]


Thumb xl sap copy
Can I recognize my body’s weight? The influence of shape and texture on the perception of self

Piryankova, I., Stefanucci, J., Romero, J., de la Rosa, S., Black, M., Mohler, B.

ACM Transactions on Applied Perception for the Symposium on Applied Perception, 11(3):13:1-13:18, September 2014 (article)

Abstract
The goal of this research was to investigate women’s sensitivity to changes in their perceived weight by altering the body mass index (BMI) of the participants’ personalized avatars displayed on a large-screen immersive display. We created the personalized avatars with a full-body 3D scanner that records both the participants’ body geometry and texture. We altered the weight of the personalized avatars to produce changes in BMI while keeping height, arm length and inseam fixed and exploited the correlation between body geometry and anthropometric measurements encapsulated in a statistical body shape model created from thousands of body scans. In a 2x2 psychophysical experiment, we investigated the relative importance of visual cues, namely shape (own shape vs. an average female body shape with equivalent height and BMI to the participant) and texture (own photo-realistic texture or checkerboard pattern texture) on the ability to accurately perceive own current body weight (by asking them ‘Is the avatar the same weight as you?’). Our results indicate that shape (where height and BMI are fixed) had little effect on the perception of body weight. Interestingly, the participants perceived their body weight veridically when they saw their own photo-realistic texture and significantly underestimated their body weight when the avatar had a checkerboard patterned texture. The range that the participants accepted as their own current weight was approximately a 0.83 to −6.05 BMI% change tolerance range around their perceived weight. Both the shape and the texture had an effect on the reported similarity of the body parts and the whole avatar to the participant’s body. This work has implications for new measures for patients with body image disorders, as well as researchers interested in creating personalized avatars for games, training applications or virtual reality.

ps

pdf DOI Project Page Project Page [BibTex]

pdf DOI Project Page Project Page [BibTex]


no image
Robotics and Neuroscience

Floreano, Dario, Ijspeert, Auke Jan, Schaal, S.

Current Biology, 24(18):R910-R920, sep 2014 (article)

am

[BibTex]

[BibTex]


no image
3D to 2D bijection for spherical objects under equidistant fisheye projection

Ahmad, A., Xavier, J., Santos-Victor, J., Lima, P.

Computer Vision and Image Understanding, 125, pages: 172-183, August 2014 (article)

Abstract
The core problem addressed in this article is the 3D position detection of a spherical object of known-radius in a single image frame, obtained by a dioptric vision system consisting of only one fisheye lens camera that follows equidistant projection model. The central contribution is a bijection principle between a known-radius spherical object’s 3D world position and its 2D projected image curve, that we prove, thus establishing that for every possible 3D world position of the spherical object, there exists a unique curve on the image plane if the object is projected through a fisheye lens that follows equidistant projection model. Additionally, we present a setup for the experimental verification of the principle’s correctness. In previously published works we have applied this principle to detect and subsequently track a known-radius spherical object.

ps

DOI [BibTex]

DOI [BibTex]


Thumb xl fancy rgb
Breathing Life into Shape: Capturing, Modeling and Animating 3D Human Breathing

Tsoli, A., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 33(4):52:1-52:11, ACM, New York, NY, July 2014 (article)

Abstract
Modeling how the human body deforms during breathing is important for the realistic animation of lifelike 3D avatars. We learn a model of body shape deformations due to breathing for different breathing types and provide simple animation controls to render lifelike breathing regardless of body shape. We capture and align high-resolution 3D scans of 58 human subjects. We compute deviations from each subject’s mean shape during breathing, and study the statistics of such shape changes for different genders, body shapes, and breathing types. We use the volume of the registered scans as a proxy for lung volume and learn a novel non-linear model relating volume and breathing type to 3D shape deformations and pose changes. We then augment a SCAPE body model so that body shape is determined by identity, pose, and the parameters of the breathing model. These parameters provide an intuitive interface with which animators can synthesize 3D human avatars with realistic breathing motions. We also develop a novel interface for animating breathing using a spirometer, which measures the changes in breathing volume of a “breath actor.”

ps

pdf video link (url) DOI Project Page Project Page Project Page [BibTex]


Thumb xl realexperiment
Nonmyopic View Planning for Active Object Classification and Pose Estimation

Atanasov, N., Sankaran, B., Le Ny, J., Pappas, G., Daniilidis, K.

IEEE Transactions on Robotics, May 2014, clmc (article)

Abstract
One of the central problems in computer vision is the detection of semantically important objects and the estimation of their pose. Most of the work in object detection has been based on single image processing and its performance is limited by occlusions and ambiguity in appearance and geometry. This paper proposes an active approach to object detection by controlling the point of view of a mobile depth camera. When an initial static detection phase identifies an object of interest, several hypotheses are made about its class and orientation. The sensor then plans a sequence of viewpoints, which balances the amount of energy used to move with the chance of identifying the correct hypothesis. We formulate an active M-ary hypothesis testing problem, which includes sensor mobility, and solve it using a point-based approximate POMDP algorithm. The validity of our approach is verified through simulation and real-world experiments with the PR2 robot. The results suggest a significant improvement over static object detection

am

Web pdf link (url) [BibTex]

Web pdf link (url) [BibTex]


Thumb xl pami
3D Traffic Scene Understanding from Movable Platforms

Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(5):1012-1025, published, IEEE, Los Alamitos, CA, May 2014 (article)

Abstract
In this paper, we present a novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene. In particular, the scene topology, geometry and traffic activities are inferred from short video sequences. Inspired by the impressive driving capabilities of humans, our model does not rely on GPS, lidar or map knowledge. Instead, it takes advantage of a diverse set of visual cues in the form of vehicle tracklets, vanishing points, semantic scene labels, scene flow and occupancy grids. For each of these cues we propose likelihood functions that are integrated into a probabilistic generative model. We learn all model parameters from training data using contrastive divergence. Experiments conducted on videos of 113 representative intersections show that our approach successfully infers the correct layout in a variety of very challenging scenarios. To evaluate the importance of each feature cue, experiments using different feature combinations are conducted. Furthermore, we show how by employing context derived from the proposed method we are able to improve over the state-of-the-art in terms of object detection and object orientation estimation in challenging and cluttered urban environments.

avg ps

pdf link (url) [BibTex]

pdf link (url) [BibTex]


Thumb xl screen shot 2015 08 22 at 22.50.12
Data-Driven Grasp Synthesis - A Survey

Bohg, J., Morales, A., Asfour, T., Kragic, D.

IEEE Transactions on Robotics, 30, pages: 289 - 309, IEEE, April 2014 (article)

Abstract
We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.

am

PDF link (url) DOI Project Page [BibTex]

PDF link (url) DOI Project Page [BibTex]


Thumb xl homerjournal
Adaptive Offset Correction for Intracortical Brain Computer Interfaces

Homer, M. L., Perge, J. A., Black, M. J., Harrison, M. T., Cash, S. S., Hochberg, L. R.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(2):239-248, March 2014 (article)

Abstract
Intracortical brain computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user’s ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called MOCA, was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors (10.6 ± 10.1\%; p < 0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs.

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl tpami small
A physically-based approach to reflection separation: from physical modeling to constrained optimization

Kong, N., Tai, Y., Shin, J. S.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(2):209-221, IEEE Computer Society, Febuary 2014 (article)

Abstract
We propose a physically-based approach to separate reflection using multiple polarized images with a background scene captured behind glass. The input consists of three polarized images, each captured from the same view point but with a different polarizer angle separated by 45 degrees. The output is the high-quality separation of the reflection and background layers from each of the input images. A main technical challenge for this problem is that the mixing coefficient for the reflection and background layers depends on the angle of incidence and the orientation of the plane of incidence, which are spatially varying over the pixels of an image. Exploiting physical properties of polarization for a double-surfaced glass medium, we propose a multiscale scheme which automatically finds the optimal separation of the reflection and background layers. Through experiments, we demonstrate that our approach can generate superior results to those of previous methods.

ps

Publisher site [BibTex]

Publisher site [BibTex]


Thumb xl tbme
Simpler, faster, more accurate melanocytic lesion segmentation through MEDS

Peruch, F., Bogo, F., Bonazza, M., Cappelleri, V., Peserico, E.

IEEE Transactions on Biomedical Engineering, 61(2):557-565, February 2014 (article)

ps

DOI [BibTex]

DOI [BibTex]


Thumb xl tdm
Targets-Drives-Means: A declarative approach to dynamic behavior specification with higher usability

Berenz, V., Suzuki, K.

Robotics and Autonomous Systems, 62(4):545-555, 2014 (article)

am

link (url) DOI [BibTex]


no image
A Limiting Property of the Matrix Exponential

Trimpe, S., D’Andrea, R.

IEEE Transactions on Automatic Control, 59(4):1105-1110, 2014 (article)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Event-Based State Estimation With Variance-Based Triggering

Trimpe, S., D’Andrea, R.

IEEE Transactions on Automatic Control, 59(12):3266-3281, 2014 (article)

am ics

PDF Supplementary material DOI Project Page [BibTex]

PDF Supplementary material DOI Project Page [BibTex]


Thumb xl muscle
Muscle Synergy Features in Behavior Adaptation and Recovery

Alnajjar, F. S., Berenz, V., Ken-ichi, O., Ohno, K., Yamada, H., Kondo, I., Shimoda, S.

In Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation: Proceedings of the 2nd International Conference on NeuroRehabilitation (ICNR2014), Aalborg, 24-26 June, 2014, pages: 245-253, Springer International Publishing, Cham, 2014 (inbook)

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl freelymoving2
A freely-moving monkey treadmill model

Foster, J., Nuyujukian, P., Freifeld, O., Gao, H., Walker, R., Ryu, S., Meng, T., Murmann, B., Black, M., Shenoy, K.

J. of Neural Engineering, 11(4):046020, 2014 (article)

Abstract
Objective: Motor neuroscience and brain-machine interface (BMI) design is based on examining how the brain controls voluntary movement, typically by recording neural activity and behavior from animal models. Recording technologies used with these animal models have traditionally limited the range of behaviors that can be studied, and thus the generality of science and engineering research. We aim to design a freely-moving animal model using neural and behavioral recording technologies that do not constrain movement. Approach: We have established a freely-moving rhesus monkey model employing technology that transmits neural activity from an intracortical array using a head-mounted device and records behavior through computer vision using markerless motion capture. We demonstrate the excitability and utility of this new monkey model, including the fi rst recordings from motor cortex while rhesus monkeys walk quadrupedally on a treadmill. Main results: Using this monkey model, we show that multi-unit threshold-crossing neural activity encodes the phase of walking and that the average ring rate of the threshold crossings covaries with the speed of individual steps. On a population level, we find that neural state-space trajectories of walking at diff erent speeds have similar rotational dynamics in some dimensions that evolve at the step rate of walking, yet robustly separate by speed in other state-space dimensions. Significance: Freely-moving animal models may allow neuroscientists to examine a wider range of behaviors and can provide a flexible experimental paradigm for examining the neural mechanisms that underlie movement generation across behaviors and environments. For BMIs, freely-moving animal models have the potential to aid prosthetic design by examining how neural encoding changes with posture, environment, and other real-world context changes. Understanding this new realm of behavior in more naturalistic settings is essential for overall progress of basic motor neuroscience and for the successful translation of BMIs to people with paralysis.

ps

pdf Supplementary DOI Project Page [BibTex]

pdf Supplementary DOI Project Page [BibTex]


no image
Perspective: Intelligent Systems: Bits and Bots

Spatz, J. P., Schaal, S.

Nature, (509), 2014, clmc (article)

Abstract
What is intelligence, and can we create it? Animals can perceive, reason, react and learn, but they are just one example of an intelligent system. Intelligent systems could be robots as large as humans, helping with search-and- rescue operations in dangerous places, or smart devices as tiny as a cell, delivering drugs to a target within the body. Even computing systems can be intelligent, by perceiving the world, crawling the web and processing â??big dataâ?? to extract and learn from complex information.Understanding not only how intelligence can be reproduced, but also how to build systems that put these ideas into practice, will be a challenge. Small intelligent systems will require new materials and fabrication methods, as well as com- pact information processors and power sources. And for nano-sized systems, the rules change altogether. The laws of physics operate very differently at tiny scales: for a nanorobot, swimming through water is like struggling through treacle.Researchers at the Max Planck Institute for Intelligent Systems have begun to solve these problems by developing new computational methods, experiment- ing with unique robotic systems and fabricating tiny, artificial propellers, like bacterial flagella, to propel nanocreations through their environment.

am

PDF link (url) [BibTex]

PDF link (url) [BibTex]


Thumb xl tang14ijcv
Detection and Tracking of Occluded People

Tang, S., Andriluka, M., Schiele, B.

International Journal of Computer Vision, 110, pages: 58-69, 2014 (article)

ps

PDF [BibTex]

PDF [BibTex]


Thumb xl jnb1
Segmentation of Biomedical Images Using Active Contour Model with Robust Image Feature and Shape Prior

S. Y. Yeo, X. Xie, I. Sazonov, P. Nithiarasu

International Journal for Numerical Methods in Biomedical Engineering, 30(2):232- 248, 2014 (article)

Abstract
In this article, a new level set model is proposed for the segmentation of biomedical images. The image energy of the proposed model is derived from a robust image gradient feature which gives the active contour a global representation of the geometric configuration, making it more robust in dealing with image noise, weak edges, and initial configurations. Statistical shape information is incorporated using nonparametric shape density distribution, which allows the shape model to handle relatively large shape variations. The segmentation of various shapes from both synthetic and real images depict the robustness and efficiency of the proposed method.

ps

[BibTex]

[BibTex]


no image
An autonomous manipulation system based on force control and optimization

Righetti, L., Kalakrishnan, M., Pastor, P., Binney, J., Kelly, J., Voorhies, R. C., Sukhatme, G. S., Schaal, S.

Autonomous Robots, 36(1-2):11-30, January 2014 (article)

Abstract
In this paper we present an architecture for autonomous manipulation. Our approach is based on the belief that contact interactions during manipulation should be exploited to improve dexterity and that optimizing motion plans is useful to create more robust and repeatable manipulation behaviors. We therefore propose an architecture where state of the art force/torque control and optimization-based motion planning are the core components of the system. We give a detailed description of the modules that constitute the complete system and discuss the challenges inherent to creating such a system. We present experimental results for several grasping and manipulation tasks to demonstrate the performance and robustness of our approach.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning of grasp selection based on shape-templates

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Bohg, J., Asfour, T., Schaal, S.

Autonomous Robots, 36(1-2):51-65, January 2014 (article)

Abstract
The ability to grasp unknown objects still remains an unsolved problem in the robotics community. One of the challenges is to choose an appropriate grasp configuration, i.e., the 6D pose of the hand relative to the object and its finger configuration. In this paper, we introduce an algorithm that is based on the assumption that similarly shaped objects can be grasped in a similar way. It is able to synthesize good grasp poses for unknown objects by finding the best matching object shape templates associated with previously demonstrated grasps. The grasp selection algorithm is able to improve over time by using the information of previous grasp attempts to adapt the ranking of the templates to new situations. We tested our approach on two different platforms, the Willow Garage PR2 and the Barrett WAM robot, which have very different hand kinematics. Furthermore, we compared our algorithm with other grasp planners and demonstrated its superior performance. The results presented in this paper show that the algorithm is able to find good grasp configurations for a large set of unknown objects from a relatively small set of demonstrations, and does improve its performance over time.

am mg

link (url) DOI [BibTex]


Thumb xl simulated annealing
Simulated Annealing

Gall, J.

In Encyclopedia of Computer Vision, pages: 737-741, 0, (Editors: Ikeuchi, K. ), Springer Verlag, 2014, to appear (inbook)

ps

[BibTex]

[BibTex]


Thumb xl ijcvflow2
A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles behind Them

Sun, D., Roth, S., Black, M. J.

International Journal of Computer Vision (IJCV), 106(2):115-137, 2014 (article)

Abstract
The accuracy of optical flow estimation algorithms has been improving steadily as evidenced by results on the Middlebury optical flow benchmark. The typical formulation, however, has changed little since the work of Horn and Schunck. We attempt to uncover what has made recent advances possible through a thorough analysis of how the objective function, the optimization method, and modern implementation practices influence accuracy. We discover that "classical'' flow formulations perform surprisingly well when combined with modern optimization and implementation techniques. One key implementation detail is the median filtering of intermediate flow fields during optimization. While this improves the robustness of classical methods it actually leads to higher energy solutions, meaning that these methods are not optimizing the original objective function. To understand the principles behind this phenomenon, we derive a new objective function that formalizes the median filtering heuristic. This objective function includes a non-local smoothness term that robustly integrates flow estimates over large spatial neighborhoods. By modifying this new term to include information about flow and image boundaries we develop a method that can better preserve motion details. To take advantage of the trend towards video in wide-screen format, we further introduce an asymmetric pyramid downsampling scheme that enables the estimation of longer range horizontal motions. The methods are evaluated on Middlebury, MPI Sintel, and KITTI datasets using the same parameter settings.

ps

pdf full text code [BibTex]

pdf full text code [BibTex]


Thumb xl glsn1
Automatic 4D Reconstruction of Patient-Specific Cardiac Mesh with 1- to-1 Vertex Correspondence from Segmented Contours Lines

C. W. Lim, Y. Su, S. Y. Yeo, G. M. Ng, V. T. Nguyen, L. Zhong, R. S. Tan, K. K. Poh, P. Chai,

PLOS ONE, 9(4), 2014 (article)

Abstract
We propose an automatic algorithm for the reconstruction of patient-specific cardiac mesh models with 1-to-1 vertex correspondence. In this framework, a series of 3D meshes depicting the endocardial surface of the heart at each time step is constructed, based on a set of border delineated magnetic resonance imaging (MRI) data of the whole cardiac cycle. The key contribution in this work involves a novel reconstruction technique to generate a 4D (i.e., spatial–temporal) model of the heart with 1-to-1 vertex mapping throughout the time frames. The reconstructed 3D model from the first time step is used as a base template model and then deformed to fit the segmented contours from the subsequent time steps. A method to determine a tree-based connectivity relationship is proposed to ensure robust mapping during mesh deformation. The novel feature is the ability to handle intra- and inter-frame 2D topology changes of the contours, which manifests as a series of merging and splitting of contours when the images are viewed either in a spatial or temporal sequence. Our algorithm has been tested on five acquisitions of cardiac MRI and can successfully reconstruct the full 4D heart model in around 30 minutes per subject. The generated 4D heart model conforms very well with the input segmented contours and the mesh element shape is of reasonably good quality. The work is important in the support of downstream computational simulation activities.

ps

[BibTex]

[BibTex]

2006


Thumb xl neuralcomp
Bayesian population decoding of motor cortical activity using a Kalman filter

Wu, W., Gao, Y., Bienenstock, E., Donoghue, J. P., Black, M. J.

Neural Computation, 18(1):80-118, 2006 (article)

Abstract
Effective neural motor prostheses require a method for decoding neural activity representing desired movement. In particular, the accurate reconstruction of a continuous motion signal is necessary for the control of devices such as computer cursors, robots, or a patient's own paralyzed limbs. For such applications, we developed a real-time system that uses Bayesian inference techniques to estimate hand motion from the firing rates of multiple neurons. In this study, we used recordings that were previously made in the arm area of primary motor cortex in awake behaving monkeys using a chronically implanted multielectrode microarray. Bayesian inference involves computing the posterior probability of the hand motion conditioned on a sequence of observed firing rates; this is formulated in terms of the product of a likelihood and a prior. The likelihood term models the probability of firing rates given a particular hand motion. We found that a linear gaussian model could be used to approximate this likelihood and could be readily learned from a small amount of training data. The prior term defines a probabilistic model of hand kinematics and was also taken to be a linear gaussian model. Decoding was performed using a Kalman filter, which gives an efficient recursive method for Bayesian inference when the likelihood and prior are linear and gaussian. In off-line experiments, the Kalman filter reconstructions of hand trajectory were more accurate than previously reported results. The resulting decoding algorithm provides a principled probabilistic model of motor-cortical coding, decodes hand motion in real time, provides an estimate of uncertainty, and is straightforward to implement. Additionally the formulation unifies and extends previous models of neural coding while providing insights into the motor-cortical code.

ps

pdf preprint pdf from publisher abstract [BibTex]

2006


pdf preprint pdf from publisher abstract [BibTex]


no image
Approximate nearest neighbor regression in very high dimensions

Vijayakumar, S., DSouza, A., Schaal, S.

In Nearest-Neighbor Methods in Learning and Vision, pages: 103-142, (Editors: Shakhnarovich, G.;Darrell, T.;Indyk, P.), Cambridge, MA: MIT Press, 2006, clmc (inbook)

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screen shot 2012 06 06 at 11.15.02 am
Products of “Edge-perts”

Gehler, P., Welling, M.

In Advances in Neural Information Processing Systems 18, pages: 419-426, (Editors: Weiss, Y. and Sch"olkopf, B. and Platt, J.), MIT Press, Cambridge, MA, 2006 (incollection)

ps

pdf [BibTex]

pdf [BibTex]

2005


Thumb xl ivc05
Representing cyclic human motion using functional analysis

Ormoneit, D., Black, M. J., Hastie, T., Kjellström, H.

Image and Vision Computing, 23(14):1264-1276, December 2005 (article)

Abstract
We present a robust automatic method for modeling cyclic 3D human motion such as walking using motion-capture data. The pose of the body is represented by a time-series of joint angles which are automatically segmented into a sequence of motion cycles. The mean and the principal components of these cycles are computed using a new algorithm that enforces smooth transitions between the cycles by operating in the Fourier domain. Key to this method is its ability to automatically deal with noise and missing data. A learned walking model is then exploited for Bayesian tracking of 3D human motion.

ps

pdf pdf from publisher DOI [BibTex]

2005


pdf pdf from publisher DOI [BibTex]


no image
Composite adaptive control with locally weighted statistical learning

Nakanishi, J., Farrell, J. A., Schaal, S.

Neural Networks, 18(1):71-90, January 2005, clmc (article)

Abstract
This paper introduces a provably stable learning adaptive control framework with statistical learning. The proposed algorithm employs nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric regression technique. Local models are allocated as necessary and their parameters are optimized on-line. Inspired by composite adaptive control methods, the proposed learning adaptive control algorithm uses both the tracking error and the estimation error to update the parameters. We first discuss statistical learning of nonlinear functions, and motivate our choice of the locally weighted learning framework. Second, we begin with a class of first order SISO systems for theoretical development of our learning adaptive control framework, and present a stability proof including a parameter projection method that is needed to avoid potential singularities during adaptation. Then, we generalize our adaptive controller to higher order SISO systems, and discuss further extension to MIMO problems. Finally, we evaluate our theoretical control framework in numerical simulations to illustrate the effectiveness of the proposed learning adaptive controller for rapid convergence and high accuracy of control.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A model of smooth pursuit based on learning of the target dynamics using only retinal signals

Shibata, T., Tabata, H., Schaal, S., Kawato, M.

Neural Networks, 18, pages: 213-225, 2005, clmc (article)

Abstract
While the predictive nature of the primate smooth pursuit system has been evident through several behavioural and neurophysiological experiments, few models have attempted to explain these results comprehensively. The model we propose in this paper in line with previous models employing optimal control theory; however, we hypothesize two new issues: (1) the medical superior temporal (MST) area in the cerebral cortex implements a recurrent neural network (RNN) in order to predict the current or future target velocity, and (2) a forward model of the target motion is acquired by on-line learning. We use stimulation studies to demonstrate how our new model supports these hypotheses.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Parametric and Non-Parametric approaches for nonlinear tracking of moving objects

Hidaka, Y, Theodorou, E.

Technical Report-2005-1, 2005, clmc (article)

am

PDF [BibTex]

PDF [BibTex]

1997


Thumb xl yasersmile
Recognizing facial expressions in image sequences using local parameterized models of image motion

Black, M. J., Yacoob, Y.

Int. Journal of Computer Vision, 25(1):23-48, 1997 (article)

Abstract
This paper explores the use of local parametrized models of image motion for recovering and recognizing the non-rigid and articulated motion of human faces. Parametric flow models (for example affine) are popular for estimating motion in rigid scenes. We observe that within local regions in space and time, such models not only accurately model non-rigid facial motions but also provide a concise description of the motion in terms of a small number of parameters. These parameters are intuitively related to the motion of facial features during facial expressions and we show how expressions such as anger, happiness, surprise, fear, disgust, and sadness can be recognized from the local parametric motions in the presence of significant head motion. The motion tracking and expression recognition approach performed with high accuracy in extensive laboratory experiments involving 40 subjects as well as in television and movie sequences.

ps

pdf pdf from publisher abstract video [BibTex]